Reg. No.:

Code No.: 20386 E Sub. Code: CSMA 31

> B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

> > Third Semester

Mathematics

Skill Based Subject — VECTOR CALCULUS

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The directional derivative of $\phi(x, y, z) = x^3 + y^3 + z^3$ at the point (1, -1, 2) is -
 - (a) $3\overline{i} + 4\overline{j} + 3\overline{k}$ (b) $3\overline{i} + 3\overline{j} + 12\overline{k}$ (c) $3\overline{i} + 3\overline{j} + 3\overline{k}$ (d) $3\overline{i} + 2\overline{j} + 2\overline{k}$

- The unit vector normal to the surface $\phi = C$ is

- If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, then $\nabla \cdot \overline{r} = -$

(b) 3y

3 (c)

- (d) 4
- If the vector $(2x,z)\overline{i} + (4x-11y+3z)\overline{j} + (3x+mz)\overline{k}$ is solenoidal, then the value of m is —
 - (a) 3

(b) 9

- (d) 11
- If $\bar{f} = x^2 \dot{i} xy \dot{j}$ and C is the straight line joining the points (0, 0) and (1, 1), then $\int_{C} \overline{f} . d\overline{r}$ is —
 - (a) 1

- (b) 0
- (c) -1
- (d)

Page 2 Code No.: 20386 E

- If $\overline{F} = z(x\overline{i} + y\overline{j} + z\overline{k})$ and C is the straight line joint (0, 0, 0) and (1, 1, 1), then $\int \bar{f} \cdot d\bar{r}$ is —
 - (a) 0

(b) -1

- (d) 2
- If S is any closed surface enclosing a volume Vand $\overline{f} = ax\overline{i} + by\overline{j} + cz\overline{k}$, then $\iint \overline{f} \cdot \overline{n} dS = -c\overline{k}$
- (a) (a+b+c)V (b) 3V(c) $(a+b+c)^3V^3$ (d) 0
- The value of $\int_{0}^{a} \int_{0}^{a} x^2 y dz dy dx$ is -
 - (a) $\frac{a^3}{3}$ (b) $\frac{a^4}{5}$
 - (c) $\frac{a^5}{4}$ (d) $\frac{a^6}{6}$
- The value of $\int_C (3x+4y)dx+(2x-3y)dy$, where C is the circle $x^2 + y^2 = 4$ is

- -8π
- (c) 8π
- (d)

Page 3 Code No.: 20386 E

- 10. The value of $\iint [(1+y)z\overline{i} + (1+z)x\overline{j} + (1+x)y\overline{k}] d\overline{r},$ where C is a closed curve in the plane x-2y+z=1 is

(b) -1

(d) 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

11. (a) Find the directional derivative $\phi = x + xy^2 + yz^3$ at (0, 1, 1) in the direction of the vector $2\overline{i} + 2\overline{j} - \overline{k}$.

Or

- (b) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $|\overline{r}| = r$, prove that $\nabla \left(\frac{1}{r}\right) = \frac{-\overline{r}}{r^3}$.
- 12. (a) If $\overline{A} = axy\overline{i} + (x^2 + 2yz)\overline{j} + y^2\overline{k}$ is irrotational, find the value of 'a'.

Or

Show that $\nabla^2 r^n = n(n+1)r^{n-2}$ where 'n' is a constant.

Page 4 Code No.: 20386 E

[P.T.O.]

13. (a) Evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = yz\overline{i} + xz\overline{j} - xy\overline{k}$ and C is the straight line having end points O(0,0,0) and P(2,4,8).

Or

- (b) If $\overline{f} = 3xy\overline{i} y^3\overline{j}$, compute $\int_C \overline{F} \cdot d\overline{r}$ along $y = 2x^2$ from (0, 0) to (1, 2).
- 14. (a) If $\overline{A} = curl \overline{F}$, compute $\iint_{S} \overline{A} \cdot \hat{n} \ dS$ for any closed surface S.

Or

- (b) Evaluate $\iiint_V \nabla . \overline{F} \, dV$ if $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$ and if V is the volume of the region enclosed by the cube $0 \le x, y, z \le 1$.
- 15. (a) Evaluate $\int_C xy dx x^2 dy$ by converting it into a double integral. If is given that the boundary of the region bounded by the line y = x and the parabola $x^2 = y$.

Or

(b) Evaluate by Green's theorem $\int_C e^{-x} (\sin y dx + \cos y dy)$ where C is the rectangle with vertices $(0,0), (\pi,0), (\pi,\pi/2), (0,\pi/2)$.

Page 5 Code No.: 20386 E

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

16. (a) If
$$\nabla \phi = (y + y^2 + z^2)\overline{i} + (x + z + 2xy)\overline{j} + (y + 2zx)\overline{k}$$
 and if $\phi(1, 11) = 3$, find ϕ .

Or

- (b) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $\overline{r} = r\hat{r}$ show that (i) $\nabla (f(r)\overline{r} = rf'(r) + 3f(r))$ (ii) $\nabla \times (f(r)\overline{r}) = \overline{0}$.
- 17. (a) Find the value of 'm' if $\overline{F} = (6xy + z^3)\overline{i} + (mx^2 z)\overline{j} + (3xz^2 y)\overline{k} \quad \text{is}$ irrotational. Find also ϕ such that $\overline{F} = \nabla \phi$.

Or

- (b) Show that
 - (i) $(\overline{V}.\nabla)\overline{r} = \overline{V}$
 - (ii) $(\overline{V} \times \nabla) \times \overline{r} = -2\overline{V}$.

Page 6 Code No.: 20386 E

18. (a) If $\overline{f} = (3x^2 + 6y)\overline{i} - 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $\int_C \overline{F} . d\overline{r} \text{ where } C \text{ is (i) a curve whose}$ parametric equations are $x = t, y = t^2, z = t^3$ (ii) straight lines OA, AB, BP where A is (1, 0, 0), B is (1, 1, 0), O(0, 0, 0) and P is (1, 1, 1).

Or

- (b) Evaluate $\iint_S \overline{A} \cdot \overline{n} \, dS$ over the surface S of the region bounded by $x^2 + y^2 = 4$, z = 0, z = 3 if $\overline{A} = 4x\overline{i} 2y^2\overline{j} + z^2\overline{k}$.
- 19. (a) Verify Gauss divergence theorem for $\overline{f} = (x^3 yz)\overline{i} 2x^2y\overline{j} + 2\overline{k}$ over the cube bounded by x = 0, y = 0, z = 0, x = a, y = a, z = a.

Or

(b) Verify Gauss divergence theorem for $\overline{A} = a(x+y)\overline{i} + a(y-x)\overline{j} + z^2\overline{k}$ taken over the region V bounded by the upper hemisphere $x^2 + y^2 + z^2 = a^2$ and the plane z = 0.

Page 7 Code No.: 20386 E

20. (a) Verify Green's theorem for $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of the region R enclosed by the parabolas $y = x^2$ and $y^2 = x$.

Or

(b) Verify Stoke's theorem for $\overline{F} = y^2 \overline{i} + y \overline{j} - xz \overline{k}$ over the upper half of the surface of the sphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$.

Page 8 Code No.: 20386 E