(6 pages)

Reg. No. :

Code No.: 9025

Sub. Code: PMAO 11

M.Phil. DEGREE EXAMINATION, NOVEMBER 2022

First Semester

Mathematics

Elective – BANACH ALGEBRA AND SPECTRAL THEORY

(For those who joined in July 2018-2019 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(5 \times 5 = 25 \text{ marks})$ Answer ALL questions, choosing either (a) or (b).

1. (a) If ϕ is a complex homomorphism on a complex algebra A with unit e. Prove that $\phi(e)=1$, and $\phi(x)\neq 0$ for every invertible $x\in A$.

Or

(b) Suppose A is a Banach algebra, $x \in G(A)$, $h \in A$, $||h|| < \frac{1}{2} ||x^{-1}||^{-1}$. Prove that $x + h \in G(A)$, and $||(x+h)^{-1} - x^{-1} + x^{-1} h x^{-1}|| \le 2 \le ||x^{-1}||^3 ||h||^2$.

2. (a) Suppose A is a Banach algebra, Ω is open in C, $f \in H(\Omega)$, and f is one-to-one in Ω . Prove that \vec{f} is a diffeomorphism of A_{Ω} onto $A_{f(\Omega)}$.

Or

- (b) Suppose A is a commutative Banach algebra. Prove that
 - (i) The Gelfand transform is an isometry for every $x \in A$, if and only if $||x^2|| = ||x||^2$ for every $x \in A$.
 - (ii) A is semisimple and \hat{A} is closed in $C(\Delta)$ if and only if there exists $k < \infty$ such that $\|x^2\| \le K \|x\|^2$ for every $x \in A$.
- (a) If the Banach algebra A is commutative and semisimple, then prove that every involution on A is continuous.

Or

(b) Suppose A is a B^* -algebra, B is a closed subalgebra of A, $e \in B$, and $x^* \in B$ for every $x \in B$. Prove that $\sigma_A(x) = \sigma_B(x)$ for every $x \in B$.

Page 2 Code No.: 9025

4. (a) If $T \in B(H)$ and if (Tx, x) = 0 for every $x \in H$. Prove that T = 0.

Or

- (b) Prove that every nonempty closed convex set $E \subset H$ contains a unique x of minimal norm.
- 5. (a) Prove that every positive $T \in B(H)$ has a unique positive square root $S \in B(H)$.

Or

(b) If A is a B^* -algebra and if $z \in A$, prove that the positive functional F on A such that F(e) = 1 and $F(zz^*) = ||z||^2$.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- 6. (a) Suppose A is a Banach algebra, $x \in A$, ||x|| < 1. Prove that
 - (i) e-x is invertible,

(ii)
$$\|(e-x)^{-1}-e-x\| \le \frac{\|x\|^2}{1-\|x\|}$$

(iii) $|\phi(x)| < 1$ for every complex homomorphism ϕ on A.

Or

Page 3 Code No.: 9025

- (b) Suppose $x \in A_{\Omega}$ and $f \in H(\Omega)$. Prove that
 - (i) $\tilde{f}(x)$ is invertible in A if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$.
 - (ii) $\sigma(\widetilde{f}(x)) = f(\sigma(x))$.
- 7. (a) State and prove the inverse function theorem.

O

- (b) Suppose $f_1, \ldots, f_k \in A(U^n)$, and suppose that to each $x \in \overline{U}^n$ there corresponds at least one i such that $f_i \neq 0$. Prove that the functions $\phi_1, \ldots, \phi_k \in A(U^n)$ such that $f_1(Z)\phi_1(z)+\ldots+f_k(z)\phi_k(z)=1$.
- 8. (a) Prove that suppose A is a commutative Banach algebra with an involution, $x \in A$, $x = x^*$ and $\sigma(x)$ contains no real λ with $\lambda \le 0$. Prove that $y \in A$ with $y = y^*$ and $y^2 = x$.

Or

Page 4 Code No.: 9025

[P.T.O.]

- (b) Every B^* -algebra A has the following properties;
 - (i) Hermitian elements have real spectra.
 - (ii) If $x \in A$ is normal, then $\rho(x) = ||x||$.
 - (iii) If $y \in A$ then $\rho(yy^*) = ||y||^2$.
 - (iv) If $u \in A, v \in A$, $u \ge 0$ and $v \ge 0$, then $u+v \ge 0$.
 - (v) If $y \in A$, then $yy^* \ge 0$.
 - (vi) If $y \in A$, then e + yy * is invertible in A.
- 9. (a) State and prove Fuglede-Putnam-Rosenblum.

Or

(b) If $T \in B(H)$ and T is normal, Prove that the unique resolution of the identity E on the Borel subsets of $\sigma(T)$ which satisfies

$$T = \int_{\sigma(T)} \lambda \, dE(\lambda).$$

- 10. (a) Suppose $T \in B(H)$. Prove that
 - (i) $(Tx, x) \ge 0$ for every $x \in H$ if and only if
 - (ii) $T = T^*$ and $\sigma(T) \subset (0, \infty)$.

Or

Page 5 Code No.: 9025

(b) If A is a B^* -algebra, prove that an isometric *-isomorphism of A onto a closed subalgebra of B(H), where H is a suitably chosen Hilbert space.

Page 6

Code No.: 9025