(6 Pages) **Reg. No. :**

Code No. : 20436 E Sub. Code : AMMA 31

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021.

Third Semester

 ${\it Mathematics-Core}$

SEQUENCES AND SERIES — I

(For those who joined in July 2020 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. If x < y, then for every z, x + z — y + z

(a)	<	(b)	\leq
(c)	>	(d)	\geq

2. [*a*, *b*] = _____

(a)	$a \le x \le b$	(b)	$a \le x < b$

(c) $a < x \le b$ (d) a < x < b

3	The	range of the sequ	ience	$(1 + (-1)^n)$ is
0.		Tange of the bequ		
	(a)	Ν	(b)	z
	(c)	{0, 1}	(d)	$\{0, 2\}$
4.	The	value of $\lim_{n \to \infty} \frac{2n+2}{2n}$	- <u>1</u> is -	
	(a)	0	(b)	1
	(c)	2	(d)	-1
5.	The	value of $\lim_{n \to \infty} \left(1 + \frac{1}{2} \right)$	$\frac{1}{2} + \cdots$	$+\frac{1}{n}$ is
	(a)	0	(b)	e
	(c)	1	(d)	∞
6.	Whi	ch of the followin	ıg is a	Cauchy sequence?
	(a)	$\left(\frac{1}{n}\right)$	(b)	(<i>n</i>)
	(c)	$((-1)^n)$	(d)	(n^2)
7.	(2^{n})	is a	seque	nce.
	(a)	convergent	(b)	divergent

(a) convergent(b) divergent(c) oscillating(d) none of these

Page 2 Code No. : 20436 E

8.	The g	geometric series	Σr^n co	onverges if ———
	(a)	0 < r < 1	(b)	$0 \le r \le 1$
	(c)	$0 \le r < 1$	(d)	$r \ge 1$
9.	If $\sum_{n=1}^{\infty}$	a_n converges to	s the	n
	(a)	$\lim_{n\to\infty}a_n=s$	(b)	$\lim_{n\to\infty}a_n=0$
	(c)	$\lim_{n\to\infty}a_n=a$	(d)	$\lim_{n\to\infty}a_n=1$
10.	If a_n	$=\frac{2^n n!}{n^n}$ then $\lim_{n \to \infty}$	$\frac{a_n}{a_{n+1}}$	is ———
	(a)	2e	(b)	e
	(c)	$\frac{1}{e}$	(d)	$\frac{e}{2}$
PART B — $(5 \times 5 = 25 \text{ marks})$				

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Let *a* and *b* be real numbers, *a* and *b* such that $a \le b + \in$, for every $\in > 0$. Prove $a \le b$.

Or

(b) Define least upper bound and given an example.

Page 3 Code No. : 20436 E

12. (a) Examine the convergence of the sequence $((-1)^n)$.

Or

(b) If
$$(a_n) \to a$$
 and $a_n \ge 0$ for all *n* prove $a \ge 0$.

13. (a) Show that if |r| < 1 then $(nr^n) \to 0$.

 \mathbf{Or}

- (b) Prove that A sequence (a_n) in R is convergent iff it is a cauchy sequence.
- 14. (a) Show that $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is not convergent.

Or

- (b) State and prove Raabe's test.
- 15. (a) Show that the series $\sum (-1)^{n+1} \frac{n}{3n-2}$ oscillates.

Or

(b) Find the radius of convergence of the logarithmic series

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

Page 4 **Code No. : 20436 E**

[P.T.O]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b), answer should not exceed 600 words.

16. (a) State and prove the triangular inequality.

 \mathbf{Or}

- (b) State and prove Cauchy Schwarz inequality.
- 17. (a) Prove that a sequence cannot converge to two different limits.

Or

(b) Show that
$$\lim_{n \to \infty} \frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{1}{2}$$
.

18. (a) State and prove Cauchy's first limit theorem.

Or

- (b) State and prove Cesaro's theorem.
- 19. (a) State and prove comparison test.

 \mathbf{Or}

(b) Prove that the harmonic series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Page 5 Code No. : 20436 E

20. (a) Prove that any absolutely convergent series is convergent.

Or

(b) State and prove Abel's theorem.

Page 6 Code No. : 20436 E