(8 pages)	Reg. No. :	2.	If $a \in G$ then the normalizer of a in G is the set $N(a) = \{x \in G / _ \}$.				
Code No. : 7751	Sub. Code : WMAM 11		(a)	xa = ax	(b)	x = ax	
M.Sc. (CBCS) D NOV	EGREE EXAMINATION, EMBER 2023.	3.	(c) If o	axa^{-1} $(G) = p^2 \text{ where } p$	(d) ois a prii	$ax = x^{-1}$ me number, the G is	
Fi	rst Semester			<u> </u>			
Math	ematics - Core		(a)	Conjugate		Equivalence	
ALGEBRA	AIC STRUCTURES	4.	(c) If A	Inverse and B are group	(d) os then A	Abelian 1×B is to	
(For those who join	ned in July 2023 onwards)		$B \times A$	A			
Time : Three hours	Maximum : 75 marks		(a) (c)	Isomorphic Not isomorphic		Equal Unequal	
	(15 × 1 = 15 marks) ALL questions.	5.	Eve			over the	
Choose the correct	answer:		(a)	Index	(b)	Normal	
1. Let A, B be subgro	sups of G if $x, y \in G$ than $x \sim y$ if		(c)	Module	(d)	Conjugate	
y = for	same $a \in A, b \in b$.	6.	A gr	oup G is	of if	there exists a finite subgroups	
(a) <i>a b</i>	(b) <i>axb</i>		G =	$N_0 \supset N_1 \supset \supset N_1$	$N_k = (e) w$	here each N_i is a N_{i-1}/N_i is abelian.	
(c) $ax^{-1}b$	(d) axa^{-1}			Solvable		Normal	
			(c)	Index	(d)	Module	

Page 2

Code No.: 7751

7.		subspace W of $A(V)$ if $WT \subset W$	V is	und	er	11.	Ever	ry linear tran	sformation	$T \in A_F(V)$ satisfi	es its
	(a)	Index	(b)	Invariant			(a)	Roots			
	(c)	Module	(d)	Refluxive			(b)	Characteris	tic polynomi	al	
3.	If $T \in A(V)$ is nilpotent then K is called the index of T if but $T^{k-1} \neq 0$			ex		(c)	Cannonical	form			
		T = 0	(b)	$T^{k+1}=0$		12.				and if the mir	
	(c)	$T^k = 0$	(d)	$T^{k-1}=c$			polynomial of T is $p(x)$ then for some basis of T matrix of T is				
9.	exce	matrix of order $t \times$ pt on the superdiagonal by	gonal					Unitary		Singular	
		1×1	(b)	М,			(c)	Square	(d)	C(P(x))	
	(c)	M_1	(d)	M_{2}		13.		onal of A is to		ments on the	main
10.	The polynomials $q_1^{(x)^{e_{11}}}, q_1(x)^{e_{12}} \dots q_k(x)^{e_{k_1}} \dots q_k(x)^{e_{k_{lk}}}$ in			in.		(a)	Sum	(b)	Product		
	F(x) are of T.						(c)	Difference	(d)	Zero	
	(a)	Elementary diviso	rs			14.	The	matrix A is	said to be a	symmetric mat	rix if
	(b)	Rational form						•			
	(c)	Transform					(a)	A' < A	(b)	A'>A	
	(d)	Minimal polynomi	al				(c)	A' = A	(d)	A'A=1	
		Page	3	Code No. : 77	51				Page 4	Code No. : '	7751

[P.T.O.]

- 15. If $T \in A(V)$ then the _____ of T is $(uT,v) = (u,vT^*); u,v \in V$
 - (a) Hermition adjoint (b) Unitary
 - (c) Normal (d) Inverse

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Verify that N(a) is a subgroup of G.

Or

- (b) Prove that $n(k) = 1 + p + ... + p^{k-1}$.
- 17. (a) If G and G'are isomorphic abelian groups then prove that for every integer s, G(s) and G'(s) are isomorphic.

Or

- (b) Prove that G is solvable if and only if $G^{(k)} = e$ for some $k \in \mathbb{Z}$.
- 18. (a) If M of dimension m is cyclic with respect to T then prove that the dimension of MT^k is m-k for all $k \le m$.

Or

Page 5 Code No.: 7751

- (b) If $u \in V_1$ is such that $uT^{n_{1-k}} = 0, 0 < k \le n_1$ then prove that $u = u_n T^k$ for some $u_n \in V_1$.
- 19. (a) Prove that is S and T are nilpotent then so is ST, S+T.

Or

- (b) Suppose the two matrices A, B in F_n are similar in k_n where K is an extension of F then prove A, B are in similar in F_n.
- 20. (a) For $A, B \in F_n$ and $\lambda \in F$, prove $tr(\lambda A) = \lambda tr A, tr(AB) = tr(BA)$.

Or

(b) If (vT, vT) = (u, v) for all $v \in V$ then prove T is unitary.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

21. (a) Prove that the number of conjugate classes in S_n in p(n), the number of partitions of n.

Or

(b) If p is a prime number and $p^{a}/o(G)$, then prove that G has a subgroup of order p^{a} .

Page 6 Code No.: 7751

22. (a) Prove that S_n is not solvable for $n \ge 5$.

Or

- (b) Show that every finite abelian group is the direct product of cyclic group.
- 23. (a) If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.

Or

- (b) Prove that there exists a subgroup W of V invariant under T, such that $V = V_1 \oplus W$.
- 24. (a) For each $i=1,2...k, V_i \neq (0)$ and $V=V_1 \oplus V_2 \oplus ... \oplus V_k$ prove that the minimal polynomial of T_i is $q_i(x)^{i}$.

Or

(b) Prove that the elements S and T in $A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.

Page 7 Code No.: 7751

- 25. (a) If $T \in A(V)$ then prove the following.
 - (i) $T^* \in A(V)$
 - (ii) $(T^*)^* = T$
 - (iii) $(S+T)^* = S^* + T^*$
 - (iv) $(\lambda S)^* = \overline{\lambda} S^*$
 - (v) $(ST)^* = T * S *$

For all $S, T \in A(V)$ and all $\lambda \in F$

Or

- (b) Define the transpose of the matrix A and prove the following for all $A, B \in F_n$.
 - (i) (A') = A
 - (ii) (A+B) = A'+B'
 - (iii) (AB)' = B'A'