Code No.: 6837 Sub. Code: PMAM 22

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

Second Semester

 ${\bf Mathematics-Core}$

 ${\rm ANALYSIS-II}$

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b] then $fg \in$
 - (a) $\mathcal{R}^2(\alpha)$
 - (b) $\mathcal{R}(\alpha)$
 - (c) $\mathcal{R}(\alpha^2)$
 - (d) None of these

- 2. $f \in \mathcal{R}(\alpha)$ if
 - (a) f is continuous on [a, b]
 - (b) f is monotonic on [a, b]
 - (c) f is bounded on [a, b]
 - (d) none of these
- $\lim_{m\to\alpha}\lim_{n\to\alpha}(\cos(m!\pi x))^{2n}=$ 3.
 - (a) 0

(b) 1

(c) -1

- (d) none of these
- Let $f_n(x) = n^2 x (1 x^2)^n$ $(0 \le x \le 1, n = 1, 2, 3, ...).$ 4. Then $\frac{1}{2}$ is the value of

 - (a) $\lim_{n\to\alpha} f_n(x)$ (b) $\lim_{n\to\alpha} \int_0^1 f_n(x) dx$
 - (c) $\int_{0}^{1} \left(\lim_{n \to \alpha} f_n(x) \right) dx$
- (d) none of these
- If \mathcal{A} has the property that $f \in \mathcal{A}$ whenever $f_n \in \mathcal{A}$ (n=1, 2, 3, ...) and $f_n \to f$ uniformly on E, then \mathcal{A} is said to be
 - (a) uniformly closed
- (b) pointwise closed
- (c) closed
- (d) none of these

Code No.: 6837 Page 2

6.
$$\int_{-1}^{1} (1-x^2)^n dx$$
 is

- (a) less than $\frac{1}{\sqrt{n}}$ (b) equal to $\frac{1}{\sqrt{n}}$
- (c) greater than $\frac{1}{\sqrt{n}}$ (d) none of these
- Let K be compact and let $f_n \in \mathcal{F}(K)$ $n = 1, 2, 3, \dots$. 7. $\left\{ f_{n}\right\}$ contains a uniformly convergent subsequence
 - (a) $\{f_n\}$ is pointwise bounded
 - (b) $\{f_n\}$ is equicontinuous on K
 - (c) Both (a) and (b) are true
 - (d) Neither (a) nor (b) is true
- Suppose the series $\sum_{n=0}^{\infty} C_n x^n$ converges for ||x|| < R8. then $\sum_{1}^{\infty} nC_n x^{n-1}$ converges in
 - (a) $\left(-\frac{1}{R}, \frac{1}{R}\right)$ (b) $\left(-2R, 2R\right)$
 - (c) $\left(-R,R\right)$
- (d) None of these

Code No.: 6837 Page 3

9.
$$\boxed{\left(\frac{1}{2}\right)} = \underline{\hspace{1cm}}.$$

(a)
$$\pi$$

(b)
$$\sqrt{\pi}$$

(c)
$$\sqrt{\frac{\pi}{2}}$$

(d)
$$\frac{\pi}{2}$$

The sequence of complex functions $\{\phi_{\!\scriptscriptstyle n}\}$ is said to 10. be orthonormal if

(a)
$$\int_{a}^{b} \phi_{n}(x)^{2} dx = 1$$
 (b) $\int_{a}^{b} \phi_{n}(x) dx = 1$ (c) $\int_{a}^{b} |\phi_{n}(x)|^{2} dx = 1$ (d) $\int_{a}^{b} \phi_{n}^{2}(x) dx = 1$

(b)
$$\int_{a}^{b} \phi_n(x) dx = 1$$

(c)
$$\int_{a}^{b} \left| \phi_n(x) \right|^2 dx = 1$$

(d)
$$\int_{a}^{b} \phi_n^2(x) dx = 1$$

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

(a) State and prove fundamental theorem of 11. Calculus.

Or

(b) Prove that $f \in \mathcal{P}(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that $U(P_{\Gamma}f_{\Gamma}\alpha) - L(P_{\Gamma}f_{\Gamma}\alpha) < \varepsilon$.

Or

- (b) State and prove the Cauchy Criterion for Uniform Convergence.
- 13. (a) Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b] for n = 1, 2, 3, ... and suppose $f_n \to f$ uniformly on [a, b], prove that $f \in \mathcal{R}(\alpha)$ on [a, b] and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$.

(b) If K is a compact metric space, if $f_n \in \mathbb{G}(K)$ for $n=1, 2, 3, \ldots$ and if $\{f_n\}$ converges uniformly on K then show that $\{f_n\}$ is equicontinuous on K.

14. (a) Let \mathcal{B} be the uniform closure of an algebra \mathcal{A} of bounded functions. Then show that \mathcal{B} is a uniformly closed algebra.

Or

(b) Suppose ΣC_n converges. Put $f(x) = \sum_{n=0}^{\infty} C_n x^n$ $\left(-1 < x < 1\right)$. Then show that $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n$.

Page 5 **Code No.: 6837**

Or

(b) If x > 0 and y > 0 then show that

$$\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Then show that $h \in \mathcal{R}(\alpha)$ on [a, b].

Or

(b) Assume α is increased monotonically and $\alpha' \in \mathcal{R}$ on [a,b]. Let f be a bounded real function on [a,b]. Then prove that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$ and $\int_a^b fd\alpha = \int_a^b f(x)\alpha'(x)dx$.

Page 6 Code No.: 6837

17. (a) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f_n'\}$ converges uniformly on [a,b], then show that $\{f_n\}$ converges uniformly on [a,b], to a function f, and $f'(x) = \lim_{n \to \infty} f_n'(x)$ $(a \le x \le b)$.

Or

- (b) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- 18. (a) If γ' is continuous on [a, b] then prove that γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)dt|$.

Or

(b) Let $\{f_n\}$ be a sequence of functions such that $f_n \to f$ uniformly on E in a metric space. Let x be a limit point of E. Then show that $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$.

Page 7 Code No.: 6837

19. (a) State and prove the Stone-Weierstrass theorem.

Or

(b) Given a double sequence $\left\{a_{ij}\right\}(i=1,\,2,\,3,\,\ldots),$ $\left(j=1,\,2,\,3,\,\ldots\right),$ suppose that $\sum_{j=1}^{\infty}\left|a_{ij}\right|=b_{i}$ $\left(i=1,\,2,\,3,\,\ldots\right)$ and Σb_{i} converges. Then prove that

$$\sum_{i-1}^{\infty} \sum_{j=1}^{\infty} aij = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} aij.$$

20. (a) State and prove Parseval's Theorem.

Or

(b) Define gamma function. Prove that if f is a positive function on $(0, \infty)$ such that (i) f(x+1)=xf(x) (ii) f(1)=1 (iii) $\log f$ is convex then show that $f(x)=\Gamma(x)$.

Page 8 Code No.: 6837