Code No.: 7143

Sub. Code: PPHM 24

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Second Semester

Physics - Core

NUMERICAL METHODS AND PROGRAMMING IN C++

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The rate of convergence of muller method is 1.
 - 1.618

1.84

2.618

- 2.84.
- The error equation of secant method is given by 2. C = -

- The linear form of the equations $xa^y = b$ is

- In cubic spline, the condition for natural spline is given by -
 - (a) $M_0 = M_n$
- (b) $M_0 = M_n = M_{n+1}$
- $M_0 = M_n = 0$ (d) $M_n = 2M_{n+1}$.
- 5. The error constant of Trapezoidal methods is

- 6. formula, Newton Cote's substituting gives the Simpson's 3/8 rule.
 - (a)

(c)

Code No.: 7143 Page 2

7.	If the condition are specified at two points, then it is called a — problem.						
	(a)	finite		(b)	bound	lary	

Taylor and Picard methods are examples of methods.

(d)

- (a) point wise(b) step by step(c) average(d) root mean square.
- The header file required for handling
 (a) conio-h
 (b) stdlib.h
 - e) math.h (d) iostream.h
- The variable declaration "float" can handle a data of range ———.
 - (a) 0 to 10⁻³⁴

initial

(c)

(b) 0 to 10-38

infinite.

- (c) 0 to 10-64
- (d) 0 to 10-68.

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Find by Newton-Raphson method correct to 4 decimal places, the root of the equation $3x - \cos x - 1 = 0$.

Or

Page 3 Code No. : 7143

(b) Solve the following system using Gauss Jordan method.

$$2x + y + 4z = 12$$
$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

 (a) Derive the Newton's forward interpolation formula for equal intervals.

Or

(b) Use the following table, apply Gauss's forward formula to get f (3.75).

x: 2.5 3.0 3.5 4.0 4.5 5.0 f(x): 24.145 22.043 20.225 18.644 17.262 16.047

13. (a) Using Trapezoidal rule, evaluate $\int_{0}^{\pi/3} \tan x \, dx$, taking 8 equal intervals.

Or

(b) Find sec 31 from the following data : θ : 31 32 33 34 $\tan \theta$: 0.6008 0.6249 0.6494 0.6745

Page 4 Code No.: 7143 [P.T.O.] 14. (a) Use Euler's method with h = 0.025, to find the solution of the equation $y' = \frac{y-x}{y+x}$ with y(0) = 1 in the range 0 < x < 0.1.

0

- (b) Solve $y' = 1 + y^2$, y(0) for x = 0.2(0.2)0.6, by Runge Kutta method of fourth order.
- 15. (a) Write a C++ program for solving a transcendental equation $x^3 3x^2 + 4x 2 = 0$ using Newton Raphson method.

Or

(b) Write a C++ program for solving the integral $\int_{0}^{3} \frac{x^{2} + x}{2} dx$ using Monte Carlo method.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Find the inverse of the matrix using Gaussian elimination method.

$$\begin{bmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

Or

Page 5 Code No.: 7143

- (b) Perform five iterations of the Muller method to find the root of the equation $f(x) = \cos x x e^x = 0$. Use the initial approximation $x_0 = -1.0$ $x_1 = 0.0$ and $x_2 = 1.0$.
- 17. (a) The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface.

x: 100 150 200 250 300 350 400

y: 10.63 13.05 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 410 feet by a suitable formula.

Or

 Using the following given datas of a function of variable t,

t: 0.1 0.2 0.3 0.4

f: 0.76 0.58 0.44 0.35

Obtain a least square fit of the form $f = a e^{-3t} + b e^{-2t}$.

18. (a) Find the value of $\log_e 2^{1/3}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's 1/3 rule taking h = 0.25.

Or

Page 6 Code No. : 7143

- Find y'(50) and y''(50) from the table of values given below.
- 56 51 x:
- y: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 Using Forward difference formula.

 $y' = x + \sqrt{y}$. y(0) = 1, Solve

for 19. (a) x = 0.2(0.2)0.6 by modified Euler method.

Or

- Find y(0.8) using Milne's predictor corrector method correct to four decimal places given $\frac{dy}{dx} = (1+x^2)$ y, y(0) = 1, obtain y(0.2)y(0.4), y(0.6) by Euler method.
- Write a C++ program for solving the 20. differential equation using Runge-Kutta fourth order method and also to solve the radio-active decay problem using it.

Or

Write a C++ program for solving the given simultaneous equations using Gauss elimination method and also to find the current in the wheat stone bridge network.

> Code No.: 7143 Page 7