(6 pages)			Reg. No. :	
Code No. : 20466 I				Sub. Code : CMCH 52
	В	.Sc. (CBCS). DEC		EXAMINATION, 2023.
		Fifth	Seme	ester
Chemistry — Core				
PHYSICAL CHEMISTRY – II				
	(F	or those who join	ed in	July 2021 – 2022)
Time: Three hours Maximum: 75 marks				
PART A — (10 × 1 = 10 marks)				
Answer ALL questions.				
Choose the correct answer:				
1.	Thermodynamics is applicable to ———————————————————————————————————			
	(a)	Microscopic	(b)	Macroscopic
	(c)	Homogeneous	(d)	Heterogeneous
2. Which of the following is true?				rue?
	(a)	$C_p > C_v$	(b)	$C_p < C_v$
			1	

of a system. Entropy is a measure ofefficiency work done randomness orderliness At equilibrium, ΔG is positive negative (d) none zero Clapeyson-Clausius equation is applicable to equilibrium involved in system. one component two phase one component three phase two component two phase two component three phase When a small amount of acid is added to a buffer solution? pH increases pH decreases pH will not change

None of these

Page 2 Code No.: 20466 E

- 7. The unit of ionic mobility is
 - (a) $cm^2 s^{-1}$
- (b) cms^{-1}
- (c) $cm v^{-1}s^{-1}$
- (d) $cm^2v^{-1}s^{-1}$
- 8. The fraction of the total molecules which is ionised in a solution of an electrolyte is
 - (a) dissociation constant
 - (b) degree of dissociation
 - (c) mole fraction of electrolyte
 - (d) ionisation constant
- 9. Pure rotational spectrum is observed in
 - (a) visible region
 - (b) infra red region
 - (c) ultra violet region
 - (d) microwave region
- 10. The number of vibrational modes of H_2O molecule is
 - (a) 2

(b) 3

(c) 4

(d) 5

Page 3 Code No.: 20466 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) State and explain Zeroth law of thermodynamics. What is its significance?

Or

- (b) Derive Kirchoff's equation and explain.
- 12. (a) What do you understand about the term 'residual entropy'? Why does it exist? Explain with an example.

Or

- (b) Derive Gibbs Helmholtz equation.
- 13. (a) Draw the phase diagram of Zn-Mg system and explain.

Or

- (b) Write notes on:
 - (i) Ionic product of water
 - (ii) pH value.

Page 4 Code No.: 20466 E

[P.T.O.]

14. (a) The equivalent conductance at infinite dilution of NH₄Cl, NaOH and NaCl at 18°C are 129.8, 227.4 and 108.9 ohm⁻¹cm⁻² g equiv⁻¹ respectively. Calculate the equivalent conductance of NH₄OH at infinite dilution at 18°C.

Or

- (b) Explain Ostwald's dilution law and its limitations.
- 15. (a) Which of the following molecules will show rotational spectra? Explain

HCl, N2, CO and CO2

Or

(b) Compare IR and Raman spectroscopy.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Three moles of an ideal gas at 27°C expand isothermally and reversibly from 20 litres to 60 litres. Calculate the value of ΔE , ΔH , q and w.

Or

(b) Explain Joule-Thomson coefficient. Prove that for an ideal gas the Joule-Thomson coefficient is zero.

Page 5 Code No.: 20466 E

- 17. (a) (i) Write a note on thermodynamic scale of temperature.
 - (ii) State and explain Nernst heat theorem.

Or

- (b) (i) Explain Chemical potential.
 - (ii) Derive Gibbs-Duhem equation.
- 18. (a) (i) Derive phase rule thermodynamically.
 - (ii) Explain the phase diagram of water system.

Or

- (b) (i) Explain common ion effect.
 - (ii) Derive Henderson equation to calculate pH of a buffer solution.
- 19. (a) How is transport number determined by Hittor'f method?

Oi

- (b) Explain in detail the Debye-Huckel theory of strong electrolytes.
- (a) Discuss the vibration-rotation spectrum of diatomic molecules.

Or

- (b) (i) Show how the stokes and anti stokes lines appear in the Raman spectrum.
 - (ii) Explain Franck-Condon principle.

Page 6 Code No.: 20466 E