(6 pages)

Reg. No. :

Code No. : 20299 E Sub. Code : SMMA 52

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021.

Fifth Semester

Mathematics — Core

REAL ANALYSIS — II

(For those who joined in July 2017-2019)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. (M, d) is a discrete metric space. $a \in M$, then B(a, 1) =
 - (a) ϕ (b) M
 - (c) $\{a\}$ (d) $\{a, 1\}$
- 2. Which of the following is open in R with usual metric?
 - (a) N (b) Z
 - (c) Q (d) R

3.	If a subset A of a metric space M is nowhere dense
	in M then

	(a) $\operatorname{int} A = \phi$	(b)	$\operatorname{int}\overline{A} = \phi$
	(c) $\overline{A} = \phi$	(d)	$\overline{A} = M$
4.	D(Q) =		
	(a) <i>φ</i>	(b)	Ζ
	(c) Q	(d)	R
5.	If <i>f</i> is a continuous fun	ction t	hen
	(a) $f(\overline{A}) = \overline{f(A)}$	(b)	$f(\overline{A}) \supseteq \overline{f(A)}$
	(c) $f(\overline{A}) \subseteq \overline{f(A)}$	(d)	$f(A) = f(\overline{A})$
6.	Which of the following	is not	a type F_{σ} ?
	(a) Q	(b)	R-Q
	(c) Z	(d)	Ν
7.	Which of the following usual metric?	ng is o	connected in R with
	(a) O		ת

- (a) *Q* (b) *R*
- (c) $[1, 2] \cup [3, 4]$ (d) Z

Page 2 Code No. : 20299 E

8. In R with discrete metric which is compact?

	(a) $\{1, 2\}$	(b)	(1, 2)
	(c) [1, 2]	(d)	R
9.	$\int_{0}^{3} [x] dx =$		
	(a) 0	(b)	2
	(c) 4	(d)	3

10. If f(x) is bounded and integrable in $\left[0, \frac{\pi}{2}\right]$, then

$$\lim_{n \to \alpha} \int_{0}^{\frac{\pi}{2}} f(x) \sin nx dx$$

(a) = 0 (b) = 1
(c) > 0 (d) > 1

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) In a metric space (M, d), prove that $|d(x, z) - d(y, z)| \le d(x, y)$ for all $x, y, z \in M$.

(b) Let (M, d) be a metric space. If $A \subseteq M$, prove that int A = Union of all open sets contained in A.

Or

Page 3 Code No. : 20299 E

- 12. (a) Let (M, d) be a metric space. If $A, B \subseteq M$ prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Or
 - (b) Prove that any discrete metric space is complete.
- 13. (a) Show that the function $f: R \to R$ defined by $f(x) = \sin x$ is uniformly continuous on R.

Or

- (b) If $f: M \to R$ is a continuous function defined on a metric space M prove that $\{x \in M \mid f(x) \ge 0\}$ is a closed set.
- 14. (a) If A and B are connected subsets of a metrix space (M, d) and $A \cap B \neq \phi$ prove that $A \cup B$ is connected.

Or

- (b) Prove that a closed subset of a compact metric space is also compact.
- 15. (a) Prove that the function f defined by

 $f(x) = \begin{cases} 0, \text{ if } x \text{ is rational,} \\ 1, \text{ if } x \text{ is irrational} \end{cases}$

is not integrable on any interval.

Or

(b) State and prove Cauchy's Mean value theorem.

Page 4 Code No. : 20299 E

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Let (M, d) be a metric space. Define $\rho(x, y) = 2d(x, y)$. Prove that d and ρ are equivalent metrices.

Or

- (b) Show that any open subset of R can be written as the union of a countable number of mutually disjoint open intervals.
- 17. (a) Prove that in any metric space every closed sphere is a closed set.

Or

- (b) State and prove Cantor's intersection theorem.
- 18. (a) Prove that $f: M_1 \to M_2$ is continuous iff inverse image of every open set is open.

Or

(b) Prove that $f: R \to R$ is continuous at $a \in R$ iff w(f, a) = 0.

Page 5 Code No. : 20299 E

19. (a) Prove that a subspace A of R is connected if and only if A is an interval.

Or

- (b) State and prove Heine Borel theorem.
- 20. (a) State and prove Rolle's Theorem.

Or

- (b) (i) If *E* is measurable prove that for all $\varepsilon > 0$ there exists an open set $0 \supseteq E$ such that $m^*(0-E) \le E$.
 - (ii) State and prove Lagrange's mean value theorem.

Page 6 Code No. : 20299 E