Code No.: 30346 E Sub. Code: JAST 11/ SAST 11

B.Sc.(CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

First/Third Semester

Statistics - Allied

STATISTICS - I

(For those who joined in July 2016 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. For a symmetric distribution $\beta_1 = ----$
 - (a) 0

(b) 1

(c) 2

- (d) 3
- 2. If $\gamma_2 = 0$ the distribution curve is
 - (a) Meso kurtic
- (b) Platy Kurtic
- (c) Lepto Kurtic
- (d) None

3.		formula for for tween x and y	_	correlation	coefficient
	(a)	$\frac{\operatorname{cov}(x,y)}{\sigma_x}$	(b)	$\frac{\operatorname{cov}(x,y)}{\sigma_{y}}$	
	(c)	$\overline{\operatorname{cov}(x,y)}$	(d)	$\sigma_x \operatorname{cov}(x, y)$	<u>)</u>

- - (a) Parallel
- (b) Opposite
- (c) Perpendicular

 $\sigma_{x}\sigma_{y}$

(d) Same direction

 $\sigma_{_{\scriptscriptstyle{\mathrm{V}}}}$

- 5. Given n attributes the total number of positive class frequency is
 - (a) $2^n 1$
- (b) 2^{n-1}

- (c) 2^n
- (d) $2^{n-1}-1$
- 6. If *A* and *B* are perfectly disassociated then the Yules coefficient of association
 - (a) +1
- (b) -1

(c) 0

- (d) ± 1
- 7. If *X* is a random variable, *a* and *b* are constants then V(aX) =
 - (a) aV(X)
- (b) $a^2V(X)$
- (c) $a^3V(X)$
- (d) $a^4V(X)$

Page 2 Code No.: 30346 E

9.	The characteristic function of the Poisson distribution is				
	(a)	$e^{\lambda(e^{it}-1)}$ (b) $e^{\lambda(e^t-1)}$			
	(c)	$e^{\lambda e^t}$ (d) $e^{\lambda (e^{it}+1)}$			
10.	0. In a normal distribution $\mu_4 =$				
	(a)	3 (b) $3\sigma^4$			
	(c)	$3\sigma^2$ (d) 0			
PART B — $(5 \times 5 = 25 \text{ marks})$					
Answer ALL questions, choosing either (a) or (b).					
11.	(a) Prove that $\mu_r' = \mu_r + rc_1\mu_{r-1}\mu_1' + rc_2\mu_{r-2}(\mu_1')^2 + \cdots$				
		$+\left(\mu_{1}'\right)^{r}$.			
		Or			
	(b)	Fit a straight line to the following data.			
		x: 1 2 3 4 6 8			
		$y: 2.4 \ 3 \ 3.6 \ 4 \ 5 \ 6$			
Page 3 Code No. : 30346 E					

The value of $\phi(0) = ----$

(b) 1

(d) $-\alpha$

(a) 0

 α

(c)

8.

12. (a) Show that $-1 \le r_{xy} \le 1$.

Or

- (b) Show that the rank correlation ρ is given by $\rho = 1 \frac{6\Sigma(x-y)^2}{n(n^2-1)}.$
- 13. (a) Examine the consistency of the following data. N = 1000 (A) = 600 (B) = 500 (AB) = 50.

Or

- (b) If Yules coefficient is Q and coefficient of colligation is Y then show that $Q = \frac{2Y}{1+Y^2}$.
- 14. (a) Prove that the moment generating function of the sum of two independent variables is to product of their moment generating function.

Or

(b) Let X have the probability density function.

$$f(x) = \begin{cases} \frac{x+1}{2}, & -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find (i) E(X) (ii) $E(X^2)$.

Page 4 Code No.: 30346 E

[P.T.O]

15. (a) Find the moment generating function about mean of a binomial distribution.

Or

(b) Find the mode of the normal distribution.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Calculate the first four moments of the following distribution about the mean Also find β_1 and β_2 .

x: 0 1 2 3 4 5 6 7 8 f: 1 8 28 56 70 56 28 8 1

Or

(b) Fit a curve of the form $y = ab^x$ to the following data.

x: 1951 1952 1953 1954 1955 1956 1957 y: 201 263 314 395 427 504 612

17. (a) Find the correlation coefficient for the following data.

x: 51 63 63 49 50 60 65 63 46 50

y: 49 72 75 50 48 60 70 48 60 56

Or

Page 5 Code No.: 30346 E

- (b) The two variables x and y have the regression lines 3x+2y-26=0 and 6x+y-31=0. Find (i) \overline{x} , \overline{y} (ii) The coefficient of correlation between x and y (iii) σ_y when $\sigma_x^2=25$.
- 18. (a) If A_1, A_2, \dots, A_n are n attributes then prove $(A_1A_2, \dots, A_n) \ge (A_1) + (A_2) + \dots + (A_n) (n-1)N.$

Or

- (b) Given the following ultimate class frequencies find the frequencies of positive class. $(ABC) = 149 (AB\gamma) = 738 (A\beta C) = 225$ $(A\beta\gamma) = 1196 (\alpha BC) = 587 (\alpha B\gamma) = 1762$ $(\alpha\beta C) = 171 (\alpha\gamma\beta) = 21842$.
- 19. (a) If X and Y are continuous random variable then
 - (i) E(X + Y) = E(X) + E(Y)
 - (ii) E(XY) = E(X).E(Y) if X and Y are independent, assuming that all the expectations exist.

Or

Page 6 Code No.: 30346 E

(b) A random variable X has the probability function

x: 0 1 2 3 4 5 6 7

 $P(x): 0 \quad k \quad 2k \quad 2k \quad 3k \quad k^2 \quad 2k^2 \quad 7k^2 + k$

- (i) find k (ii) evaluate P(X < 6) $P(X \ge 6)$ P(0 < X < 5) (iii) determine the distribution function of X.
- 20. (a) If $X \sim P(\lambda)$ then prove that $\mu_{r+1} = r\lambda \mu_{r-1} + \lambda \frac{d\mu_r}{d\lambda} \ .$

Or

(b) In a normal distribution 7% of the items are under 35 and 89% of the items are under 63. Find the mean and standard deviation of the distribution.

Page 7 Code No.: 30346 E