(7 pages)	Reg. No. :
Code No.: 5373	Sub. Code: ZMAM 25
M.Sc. (CBCS) DEGREE	EXAMINATION, APRIL 2023.
Secon	nd Semester
Mathe	matics – Core
RESEARCH METHO	DOLOGY AND STATISTICS
(For those who join	ned in July 2021 onwards)
Time: Three hours	Maximum: 75 marks
PART A —	$(10 \times 1 = 10 \text{ marks})$
Answer	ALL questions.
Choose the correct	answer:
1. Text books are information.	example of of
(a) Primary source	es (b) Secondary sources
(c) Constant	(d) Variable
2. The length of the words.	e abstract may be
(a) 100	(b) 200
(c) 300	(d) 400

3.	The marginal p.d.f.	$f_2(x_2)$ of X_2 in discrete case	is
	(a) $\sum f(x_1x_2)$	(b) $\sum_{x} f(x_1 x_2)$	

(c)
$$\sum_{x_1} f(x_1 x_1)$$
 (d) $\sum_{x_1} f(x_2 x_2)$

If the joint p.d.f. of the random variable $x_1, x_2, f(x_1, x_2) = x_1 + x_2, \qquad 0 < x_1 < 1, \quad 0 < x_2 < 10$ elsewhere then the marginal p.d.f. of X_1 is

(a)
$$x_2 + 1$$
 (b) $x_2 + \frac{1}{2}$ (c) $x_1 + \frac{1}{2}$ (d) $x_2 + 2$

The mean of the gamma distribution is

- (b) $\alpha\beta^2$ (a) $\alpha\beta$ (c) $\alpha 2\beta$ (d) $3\alpha\beta$
- The variance of Chi-square distribution $\chi^2(r)$ is
 - (a) r (b) 2r (c) 3r (d) r^2

Page 2 Code No.: 5373

- A function of one or more random variables that does not depend upon any unknown parameters is called a
 - (a) statistic
- (b) parameter

(c) unit

- (d) variance
- If F has an F-distribution with parameters r_i and r_2 then 1/F has an F-distribution with parameters
 - (a) $1/r_1$, $1/r_2$ (b) r_2 , r_1

____ and ____

- (c) $1/r_2$, $1/r_1$ (d) r_1 , r_2
- The mean of the random sample $x_1, x_2, ..., x_n$ $n \ge 2$
 - (a) $\frac{\sum x_i}{n}$ (b) 1/n

- (c) x_i/n
- (d) $X_i * n$
- 10. If $f(x_1, x_2) = \frac{x_1 x_2}{36}$, $x_1 = 1, 2, 3$, $x_2 = 1, 2, 3$ / 0 elsewhere then $Pr(x_1 = 2, x_2 = 3)$ is _____.
 - (a) 0

(b) 1

(c) 1/6

(d) 1/2

Code No.: 5373 Page 3

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions by choosing either (a) or (b).

11. (a) What are the types, methods and techniques used in research methodology?

Or

- (b) State the any three research process in flow chart.
- (a) The joint p.d.f. of the random variable X and Y is $f(x, y) = 6x^2y$, 0 < x < 1, 0 < y < 1 and zero elsewhere then find Pr(0 < x < 3/4, 1/3 < y < 2).

Or

- (b) Let the joint p.d.f. of the random variables X_1 and X_2 be $f(x_1, x_2) = x_1 + x_2$, $0 < x_1 < 1, 0 < x_2 < 1$ and zero else where then prove that X_1 and X_2 are dependent.
- 13. (a) Let X $\chi^2(10)$. be Then find Pr(3.25 < X < 20.5).

Or

(b) If $(1-2t)^{-6}$, t < 1/2 is the m.g.f. of the random variable X then find Pr(X < 5.23).

> Page 4 Code No.: 5373 [P.T.O.]

14. (a) Let X have the p.d.f. f(x) = 1/3, x = 1, 2, 3, zero else then find the p.d.f. of Y = 2X + 1.

Or

- (b) Let X have the p.d.f. f(x) = 2x, 0 < x < 1 zero then find the value of the jacobian if $Y = 8x^3$ also the p.d.f. of Y.
- 15. (a) Let X_1 and X_2 be independent with normal distributions $N(\mu_1, \sigma_2^2)$ and $N(\mu_2, \sigma_2^2)$ respectively. Then for the random variable $Y = X_1 X_2$, find the p.d.f. g(y) of Y.

Or

(b) Let the random variable X_1, X_2 have the same p.d.f. f(x) = x/6, x = 1, 2, 3, 0 else. Then find $Pr(X_1 + X_2 = 3)$

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing either (a) or (b).

16. (a) Write about bibliography and appendices.

Or

(b) Explain about the review of literature.

Page 5 Code No.: 5373

17. (a) Let X_1, X_2 and X_3 be three mutually independent random variables and let each have the p.d.f. f(x) = 2x, 0 < x < 1, zero elsewhere. The joint p.d.f. of X_1, X_2 and X_3 is $f(x_1)f(x_2)f(x_3) = 8x_1x_2x_3, 0 < x_i < 1, i = 1,2,3$, zero elsewhere. Find the expected value of $5X_1X_2X_3 + 3X_2X_3^4$. Also find the p.d.f. of the random variable Y the maximum of X_1, X_2 and X_3 .

Or

- (b) Let X_1 and X_2 denote random variables that have the joint p.d.f. $f(x_1, x_2)$ and the marginal probability density functions $f_1(x_1)$ and $f_2(x_2)$ respectively. Let $M(t_1 t_2)$ be the m.g.f. of the distribution. Then prove that X_1 and X_2 are independent if and only if $M(t_1, t_2) = M(t_1, 0)M(0, t_2)$.
- 18. (a) Let X have a gamma distribution with $\alpha = r/2$, where r is a positive integer and $\beta > 0$. If the random variable $Y = 2X/\beta$ find the p.d.f. of Y.

Or

(b) Prove that if the random variable X is $N(\mu, \sigma^2)$, $\sigma^2 > 0$, then the random variable $V = = (X - \mu)^2 / \sigma^2$ is $\chi^2(1)$.

Page 6 Code No. : 5373

(a) Derive 't' distribution.

Or

- (b) If F has F-distribution with parameters $r_1 = 5$ and $r_2 = 10$, find a and b so that $Pr(F \le a) = 0.05$ and $Pr(F \le b) = 0.95$ and Pr(a < F < b) = 0.90.
- 20. (a) Prove that (i) \overline{X} is $N(\mu, \sigma^2/n)$ (ii) ns^2/σ^2 is $\chi^2(n-1)$ (iii) \overline{X} and S are independent.

Or

(b) Let $X_1, X_2,...X_n$ be independent random variables having respectively, the normal distributions $N(\mu, \sigma_1^2), N(\mu_2, \sigma_2^2)...$ $N(\mu_n, \sigma_n^2)$. Then prove that the random variable $Y = k_1 X_1 + k_2 X_2 + ... + k_n X_n$ where k_1, k_2, \dots, k_n are real constants, be normally distributed with mean $k_1\mu_1 + ... + k_n\mu_n$ and variance $k_1^2 \sigma_1^2 + ... + kn^2 \sigma_n^2$.

> Code No.: 5373 Page 7