Reg. No. :

Code No. : 30312 E Sub. Code : JMPH 61/ SMPH 61

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester

Physics - Main

DIGITAL ELECTRONICS

(For those who joined in July 2016 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer :

1. The number of bits in a binary number of length 2 bytes is ———.

(a) 8 (b) 4

(c) 16 (d) none

(6 pages)

2. The one's complem			t of 1001	l0 is ———.
	(a)	01101	(b)	011100
	(c)	11111	(d)	none
3.	According to De Morgan's first theorem, $\overline{A+B} =$			
	(a)	$\overline{A.B}$	(b)	$\overline{A} + \overline{B}$
	(c)	$\overline{A} \cdot \overline{B}$	(d)	none
4.	The OR gate is equivalent to ———— of inj			
	(a)	Product	(b)	Sum
	(c)	Subtraction	(d)	None
5.	A flip flop is a bistable electronic device that stable states.			
	(a)	three	(b)	one
	(c)	two	(d)	none
6.	The	condition for c	arrier i	in a Half Adder is
	(a)	C = A + B	(b)	C = A - B
	(c)	$C = A \cdot B$	(d)	none

Page 2 Code No. : 30312 E

- 7. For a *n*-variable problem there can be ______ minterms.
 - (a) 2n (b) 2/n
 - (c) 2^n (d) none
- 8. The don't care condition in a Karnaugh map is referred by ———.
 - (a) 1 (b) 0
 - (c) X (d) none
- 9. Shift Register is used to pulses.
 - (a) Add (b) Subtract
 - (c) Count (d) None

_____.

- 10. The A/D converter, converts in to
 - (a) analog, digital (b) digital, analog
 - (c) decimal, binary (d) none

Page 3 Code No. : 30312 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Answer should not exceed 250 words.

11. (a) Convert the hexadecimal numbers 2F59 and AB10 into binary numbers.

Or

- (b) Explain the excess three code with an example.
- 12. (a) State and prove De Morgan's theorems.

 \mathbf{Or}

- (b) Draw the symbols and truth tables for AND and OR gates.
- 13. (a) Explain the working of Half adder.

Or

- (b) Explain the working of R–S flip-flop.
- 14. (a) Explain two variable Karnaugh map.

Or

(b) Explain the implementation of POS form using NAND gate.

Page 4 Code No. : 30312 E

[P.T.O.]

15. (a) What are the types of Registers?

Or

(b) Explain the working of Asynchronous counter.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Answer should not exceed 600 words.

16. (a) Explain the conversion of

- (i) hexadecimal number into binary number and
- (ii) binary number into hexadecimal number.

Or

- (b) Explain binary subtraction by 2's complement method with an example.
- 17. (a) Explain the postulate and theorems of Boolean algebra.

 \mathbf{Or}

(b) Explain the universality of NOR gate.

Page 5 Code No. : 30312 E

18. (a) Explain the working of Full adder.

Or

- (b) What are the types of flip-flop? Explain the working of Master Slave flip-flop.
- 19. (a) Explain the SOP form of Boolean functions.

Or

(b) Using Karnaugh map simplify :

 $Y = F(A, B, C, D) = \sum M(7,9,10,11,12,13,14,15)$

20. (a) Explain the working of decade counter.

 \mathbf{Or}

(b) Explain the working of D/A converter.

Page 6 Code No. : 30312 E