Reg. No.:.... (8 pages)

Code No.: 6365 Sub. Code: ZMAM 12

> M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

> > First Semester

Mathematics — Core

ANALYSIS — I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. Any discrete metric space is
 - first category
- (b) second category
- third category
- (d) none of these
- Any discrete metric space having more than one point is
 - connected
- (b) finite
- null set
- (d) disconnected

- If the sequence $\{a_n\}$ is bounded and sequence $\{b_n\}$ converges to zero then the sequence $\{a_n b_n\}$
 - diverges to +∞
- (b) diverges to -∞
- - converges to zero (d) none of these
- Find $\lim \sup a_n$ for the sequence $\{a_n\} = \{n!\}$
 - (a) 1

(b) 0

- (d) none of these
- Applying Cauchy's root test the series
 - convergent
 - divergent (b)
 - neither convergent nor divergent (c)
 - both convergent and divergent
- If the n^{th} term of a series is $a_n = \frac{1.2.3 \cdots n}{3.5.7 \cdots 2n-1}$

then
$$\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = \frac{a_n}{a_{n+1}}$$

(b) 2

(d) 0

Code No.: 6365 Page 2

- 7. Which of the following is equivalent to compactness in a metric space M?
 - (a) M is totally bounded
 - (b) M is complete
 - (c) Every bounded subset of M has a limit point
 - (d) Every infinite subset of M has a limit point
- 8. Which of the following subset of R is both compact and connected?
 - (a) R

- (b) (0, 1)
- (c) [0,100]
- (d) Q
- 9. Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x)
 - (a) 1

(b) 2

(c) 0

- (d) ∞
- 10. Suppose f is differentiable in (a, b) if f'(x) = 0 or all $x \in (a,b)$, then f is ————
 - (a) monotonically increasing
 - (b) monotonically decreasing
 - (c) constant
 - (d) none of these

Page 3 Code No.: 6365

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Show that the closed subsets of compact sets are compact.

Or

- (b) Let K be a positive integer. If $\{I_n\}$ is a sequence of k-cells such that $I_n \supset I_{n+1}(n=1,2,3,\cdots)$, then prove that $\bigcap_{n=1}^{\infty} I_n$ is not empty.
- 12. (a) Show that if p > 1, $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p}$ converges; if $p \le 1$, the series diverges.

Or

- (b) Suppose $\{S_n\}$ is monotonic. Then prove that $\{S_n\}$ converges iff it is bounded.
- 13. (a) If $\sum a_n = A$, and $\sum b_n = B$, then prove that $\sum (a_n + b_n) = A + B$, and $\sum ca_n = CA$ for any fixed c.

Or

Page 4 Code No.: 6365 [P.T.O.]

- (b) Prove:
 - (i) the partial sums A_n of $\sum a_n$ from a bounded sequence;
 - (ii) $b_0 \ge b_1 \ge b_2 \ge \cdots$;
 - (iii) $\lim_{n\to\infty}b_n=0.$
- 14. (a) Let f be monotonic on (a, b). Then prove that the set of points of (a, b) at which f is discontinuous is at most countable.

Or

- (b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y then. Prove that f (X) is compact.
- 15. (a) If f and g are continuous real function on [a, b] which are differentiable in (a, b), then prove that there is a point $x \in (a, b)$ at which [f(b)-f(a)]g'(x)=[g(b)-g(a)]f'(x). Note that differentiability is note required at the end points.

Or

Page 5 Code No.: 6365

(b) Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \lambda < f'(b)$. Then prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$. A similar result holds of course if f'(a) > f'(b).

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) Prove that a subset E of the real line R^1 is connected iff it has the following property: If $x \in E, Y \in E$, and x < z < y, then $z \in E$.

Or

- (b) Suppose $K \subset Y \subset X$. Then prove K is compact relative to X iff K is compact relative to Y.
- 17. (a) Prove that the following:
 - (i) If $\{p_n\}$ is a sequence in a compact metrix space X, then some subsequence of $\{p_n\}$ converges to a point of X.
 - (ii) Every bounded sequence in R^k contains a convergent subsequence.

Or

(b) Prove that e is irrational

Page 6 Code No.: 6365

- 18. (a) Suppose
 - (i) $\sum_{n=0}^{\infty} a_n$ converges absolutely
 - (ii) $\sum_{n=0}^{\infty} a_n = A,$
 - (iii) $\sum_{n=0}^{\infty} b_n = B,$
 - (iv) $C_n \sum_{k=0}^n a_k b_{n-k} (n = 0, 1, 2, \cdots).$

Then prove that $\sum_{n=0}^{\infty} C_n = AB$. That is, the product of two convergent series converges, and to the right value, if at least one of the two series converges absolutely.

Or

- (b) State and prove Ratio Test.
- 19. (a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f uniformly continuous on X.

Or

(b) Let X, Y, E, f, and p is a limit point of E. Then prove that $\lim_{x\to p} f(x) = q$ iff $\lim_{n\to\infty} f(p_n) = q$ for every sequence $\{p_n\}$ in E such that $p_n \neq p$, $\lim_{n\to\infty} p_n = p$.

Page 7 Code No.: 6365

20. (a) Suppose f is continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If $h(t) = g(f(t))(a \le t \le b)$, then prove that h is differentiable at x, and h'(x) = g'(f(x))f'(x).

Or

(b) State and prove that L' Hospital's rule.

Page 8 Code No.: 6365