(8 pages)	R	eg. No. :	3.	The moment generating function $M(t)$ is defined by		
Code N	o.: 5764	Sub. Code: WMAE 22		(a) e^{tx} (c) $E(xf(x))$		
M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024. Second Semester			4.	The mean of a binomial distribution having m.g.f. as $(.5 + .5e^t)^7$ is		
Mathematics				(a) 7/2		
(For Time : The Chock of A fundant	ve III — MATHEN those who joined ree hours PART A — (15) Answer ALI ose the correct ans action which assig	MATICAL STATISTICS in July 2023 onwards) Maximum: 75 marks × 1 = 15 marks) L questions.	5.6.	is if A (a) $P(A)P(B)$ (c) $P(B)/P(A)$ The random varia stochastically ine $ff(x_1, x_2) =$	bles X_1 and X_2 are said to be dependent if and only if (b) $f_1(x_1)f_2(x_2)$	
(a) 1 (c) 1 2. The	eal andom	(b) complex (d) constant where S is the	7.	If $(1-2t)^{-6}$, $t<1/t$ function of a rando	2 is the moment generating om variable then its variance is	
(a) ((b) 8		(a) 3	(b) 12	
(c)		(d) 4		(c) 24	(d) 5	
					Page 2 Code No. : 5764	

8.	The formula	for	\overline{X}	is	
O.	THE TOTHICH	TOT	**	10	

The m.g.f. of a normal distribution is $e^{3t+\frac{36t^2}{2}}$ then the standard deviation is

(a) 4

(b) 6

(c) 1

(d) 3

10. If F have an F distribution with parameters r_i and r_2 then 1/F has an F distribution with parameters ____

- (a) r_1/r_2 (b) $r_1.r_2$
- (c) r_2 and r_1
- (d) $1/r_2$

The variance S^2 of n random variables X_1, X_2,X_n is _____

- (a) $\sum_{i=1}^{n} \left(X_i \overline{X} \right)^2 / n$ (b) $\sum_{i=1}^{n} \left(X_i \overline{X} \right)$
- (c) $\sum_{i=1}^{n} (X_i \overline{X})^3 / n$ (d) $\sum_{i=1}^{n} (X_i + \overline{X})$

Code No.: 5764 Page 3

12. Determine the constant that $f(x) = cx(1-x)^3$, 0 < x < 1, 0 elsewhere for the beta distribution.

(a) 1

(b) 9

(c) 20

(d) 4

13. If $\lim_{n\to\infty} F_n(y) = F(y)$ for every point y then the random variable Y_n is said to have a _____ distribution with distribution function F(y).

- (a) one to one
- (b) cauchy
- (c) limiting
- (d) continuous

14. A distribution function of discrete type which has a probability of 1 at a single point is called as distribution.

- (a) inventory
- (b) elements

(c) cube

(d) degenerate

The limiting distribution of a random variable is degenerate then the random variable is said to be to the constant that has the probability of 1.

- (a) converge stochastically
- (b) diverge stochastically
- (c) both (a) and (b)
- (d) neither (a) nor (b)

Page 4

Code No.: 5764

[P.T.O.]

PART B — $(5 \times 4 = 20 \text{ marks})$ Answer ALL questions, choosing either (a) or (b).

16. (a) Let X denote the random variable with E(X)=3 and $E(X^2)=13$ then find the lower bound for $\Pr(-2 < X < 8)$ using Chebyshev's inequality.

Or

- (b) Let X have the p.d.f. $f(x) = \frac{1}{2}(x+1)$, -1 < x < 1, 0 elsewhere. Find the mean and variance of X.
- 17. (a) Derive the m.g.f. of Binomial distribution and hence find the mean and variance of the distribution.

Or

- (b) Let X_1 and X_2 have the joint p.d.f. $f(x_1, x_2) = 2, \quad 0 < x_1 < x_2 < 1. \quad \text{Find} \quad \text{the conditional p.d.f. of } X_1 \text{ given } X_2 = x_2.$
- 18. (a) If $(1-2t)^{-6}$, t<1/2 is the moment generating function of the random variable X then find Pr(X<5.23).

Or

(b) Let X be $\chi^2(10)$. Find $\Pr(3.25 \le X \le 20.5)$. Find a if $\Pr(a < x) = 0.05$ and $\Pr(X \le a) = 0.95$.

Page 5 Code No.: 5764

19. (a) Let \overline{X} be the mean of the random sample of size 25 from a distribution that is n(75, 100). Find $pr(71 < \overline{X} < 79)$.

Or

- (b) Let F have an F distribution with parameters r_1 and r_2 . Prove that 1/F has an F distribution with parameters r_2 and r_1 .
- 20. (a) Let Y_n denote the nth order statistic of a random variable from the uniform distribution with $f(x) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$ else. Prove that $Z_n = n(\theta Y_n)$ has a limiting distribution with distribution function G(z).

Oı

(b) Let Z_n be $\chi^2(n)$. The m.g.f. of Z_n is $(1-2t)^{-n/2}$, t<1/2. Investigate the limiting distribution of the random variable $Y_n=(Z_n-n)/\sqrt{2n}$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

21. (a) Let X have the p.d.f. f(x) = x + 2/18, -2 < x < 4, 0 elsewhere. Find $E(X+2)^3$ and $E(6X-2(X+2)^3)$.

Or

(b) State and prove Chebyshev's inequality.

Page 6 Code No.: 5764

22. (a) Let X_1 and X_2 have the joint p.d.f. $f(x_1, x_2) = \frac{x_1 + x_2}{21}, \quad x_1 = 1, 2, 3, \quad x_2 = 1, 2, 0,$ elsewhere. Find the marginal p.d.f. of X_1 and X_2 hence find $\Pr(X_1 = 3)$ and $\Pr(X_2 = 2)$.

Or

- (b) Let the random variables X_1 and X_2 have the joint p.d.f. $f(x_1, x_2)$. Then prove that X_1 and X_2 are stochastically independent if and only if $f(x_1, x_2)$ can be written as a product of a non negative function of x_1 along and a non negative function of x_2 alone.
- 23. (a) Derive the moment generating function of the normal distribution.

Or

- (b) If the random variable X is $n(\mu, \sigma^2)$, $\sigma^2 > 0$ then prove that $V = (x \mu^2)/\sigma^2$ is $\chi^2(1)$.
- 24. (a) Derive t distribution.

Or

(b) Let Y_1 , Y_2 , Y_3 be the order statistics of a random sample of size 3 from a distribution having p.d.f. f(x)=1, 0 < x < 1, 0 elsewhere. find the p.d.f. of $Z_1 = Y_3 - Y_1$.

Page 7 Code No.: 5764

25. (a) State and prove Central limit theorem.

Or

(b) Let $F_n(y)$ denote the distribution function of a random variable Y_n whose distribution depends on the positive integer n. Let c denote a constant which does not depend upon n. Prove that the random variables Y_n converges stochastically to the constant c if and only if for every $\varepsilon > 0$ $\lim_{n \to \infty} \Pr(y_n - c | < \varepsilon) = 1$.

Page 8 Code No. : 5764