(7 pages) Reg. No.:

Code No.: 6391 Sub. Code: ZPHM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2022.

Third Semester

Physics - Core

QUANTUM MECHANICS - I

(For those who joined in July 2021 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The value of probability density will be
 - (a) $\frac{1}{\sqrt{2}}$

(b) $\frac{1}{2}$

(c) $\frac{1}{2^2}$

(d) (1/2)²

- To solve schrodinger equation we need potential and
 - (a) physical requirements of system
 - (b) boundary condition
 - (c) none of these
 - (d) both (a) and (b)
- 3. The energy Spectra of bound state are
 - (a) Continuous
- (b) Discrete
- (c) Degenerate
- (d) Non Degenerate
- 4. Bound State Occur when particle can not move to
 - (a) Infinity
- (b) Maximum

(c) Zero

- (d) Minimum
- 5. The eigen function of a degenerate spectrum is an even potential do not have
 - (a) odd parity
- (b) even parity
- (c) definite parity
- (d) none
- 6. If the PE is even the Hamilton will be
 - (a) odd
 - (b) even
 - (c) neither even nor odd
 - (d) none

Page 2 Code

Code No.: 6391

- 7. If L is angular momentum operator then
 - (a) $L \times L = 0$
- (b) $L_L = L_z$
- (c) $L \times L = iLh/2\pi$
- (d) $L_{-}(L \times L) = 0$
- If L is angular momentum operator and Lz is its z-component, then
 - (a) $[L, L_z] = 0$
- (b) $[L^2, Lz] = 0$
- (c) $[L^2, L_z] = h$
- (d) $[L^2, Lz] = 1$
- 9. In the Stark effect if first excited state of hydrogen atom, the degeneracy is
 - (a) Completely removes
 - (b) Not remove at all
 - (c) Partially removes
 - (d) Four folds
- 10. The Process which is not allowed is
 - (a) Spontaneous emission
 - (b) Spontaneous absorption
 - (c) Induced absorption
 - (d) Induced emission

Page 3 Code No.: 6391

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) An electron has a speed of 5.00 m/s with an accuracy of 0.004 % calculate the certainty with which we can locate the position of the electron.

Or

- (b) How classical physics failed to account for the spectral distribution of energy density in a black body?
- 12. (a) Formulate schroedingers for a rigid rotator. Find its eigen values and eigen functions.

Or

- (b) Determine the energy levels of a linear harmonic oscillator on the basis of the schroedinger's equation.
- 13. (a) If A and B are constants of motion and H is the Hamiltonian, then show that [A,B] is also a constant of motion.

Or

(b) Define Hilbert space and illustrate its significance in the study of quantum mechanics.

Page 4 Code No.: 6391

[P.T.O.]

14. (a) If the angular momentum operators obey the rule $[J_x, J_y] = i\hbar j_z$ and similar commutation relations for the other components, evaluate the commutators $[J^2, J_x]$ and $[J^2, J_+]$. What would be the roles of J_+ and J_- in the new situation?

Or

- (b) Derive the eigen value of operator J^2 and J_z where J^2 and J_z represent the square and the Z-component of the angular momentum operator.
- 15. (a) Give an account of adiabatic approximation.

Or

- (b) Which of the following transitions are electric dipole allowed?
 - (i) $1s \rightarrow 2s$
 - (ii) $1s \rightarrow 2p$
 - (iii) $2p \rightarrow 3d$

Page 5 Code No.: 6391

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Anucileus is confined to nucleus of radius 5×10^{-15} meters. Calculate the minimum uncertainty in the momentum of the nucleon. Also calculate the minimum kinetic energy of the nucleon.

Or

- (b) Derive time dependent and independent schrodinger wave equations.
- 17. (a) Write down radial wave function for hydrogen atom and solve it to obtain the expression for bound state.

Or

- (b) Calculate the discrete energy levels of a particle in one dimensional square well potential with perfectly rigid walls.
- 18. (a) Does taking the complex conjugate correspond to
 - (i) a linear operator
 - (ii) a Hermitian operator
 - (iii) an operator which is its own complex conjugate?

Or

(b) Give the matrix theory of the linear harmonic oscillator.

Page 6 Code No.: 6391

19. (a) Calculate C-G coefficient for $j_1 = 1$ and $j_2 = 1/2$.

Or

- Find the angular momentum matrices for j = 1 for the operator $\langle J'm' | J^2 | Jm \rangle$ and $< J'm' \mid J_Z \mid J_m > .$
- What do you mean by perturbation theory? 20. (a) Discuss the perturbation theory for non-degerate levels in first and second orders.

Or

Derive Fermi-Golden rule for constant perturbation that acts for a short interval of time.

> Page 7 Code No.: 6391