(6 pages)

Reg. No. :

Code No.: 6791

Sub. Code: KCHM 22

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2017.

Second Semester

Chemistry

INORGANIC CHEMISTRY — II

(For those who joined in July 2016 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The oxide which adopts normal spinel structure is
 - (a) Co₃O₄
- (b) Fe₃O₄
- (c) NiAl₂O₄
- (d) None of the above
- 2. The complex ion developing the highest CFSE is
 - (a) $[Co(NH_3)_6]^{2+}$
- (b) [Rh(NH₃)₆]³⁺
- (c) $[Ir(NH_3)6]^{3+}$
- (d) $[Co(NH_3)_6]^{3+}$

- 3. [PtCl₄]²⁻ on treatment with NH₃ give a product of composition [PtCl₂(NH₃)₂]. It is a
 - (a) Trans-isomer
 - (b) Cis-isomer
 - (c) Both (a) and(b)
 - (d) None of the above
- 4. Which of the following complexes is expected to be labile to ligand substitution reaction?
 - (a) $[Ir(NH_3)_6]^{3+}$
- (b) $[Mo(NH_3)_6]^{3+}$
- (c) $[Ni(en)_3]^{2+}$
- (d) $[Co(NO_2)_6]^{3-}$
- 5. Calculate the magnetic moment for K₄[Mn(CN)₆]
 - (a) 1.7

(b) 1.2

(c) 1.5

- (d) 1.9
- 6. The M-L charge transfer energies decrease as
 - (a) The ligand becomes more reducible in nature
 - (b) The ligand becomes less reducible in nature
 - (c) The ligand becomes normally reducible in nature
 - (d) None of the above

Page 2 Code No.: 6791

7. Laser ablation is also use	d t	to	treat
-------------------------------	-----	----	-------

- (a) HIV
- (b) Chronic disorder
- (c) Cancer
- (d) None of the above

8. When the size particle decreases the band gap is

- (a) Increases
- (b) Decreases
- (c) Remains the same
- (d) None of the above

9. B₄H₄²⁻ is — cluster.

- (a) Closo
- (b) Hypho

(c) Nido

(d) Arachno

Among the following which one is the hexanuclear cluster type.

- (a) Tantalum
- (b) Rhenium
- (c) Iridium
- (d) Ruthenium

Page 3 Code No.: 6791

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Write a short notes on lattice energy.

Or

- (b) Write a short note on spectrochemical series with examples.
- 12. (a) Describe ion exchange method.

Or

- (b) Explain anation reactions.
- 13. (a) Write a short note on quenching of orbital contribution to magnetic moment.

Or

- (b) Describe charge transfer spectra.
- 14. (a) Write a short notes on sputtering.

Or

(b) Explain polymer based nanocomposites.

Page 4

Code No.: 6791

[P.T.O.]

15. (a) Explain structure and isomerizations of carboranes.

Or

(b) Explain the synthesis and structure of borazines.

PART C - (5 × 8 = 40 marks)

Answer ALL questions.

Each answer should not exceed 600 words.

16. (a) Explain the effect of pi-bonding in octahedral complexes.

Or

- (b) Describe Jahn-Teller theorem and explain its consequences.
- 17. (a) Derive and explain stepwise and overall stability constant and formation constant.

Or

- (b) Discuss the account of Bjerrum method.
- 18. (a) What are orgel diagrams? Draw and discuss a combined orgel energy level diagram for d¹ (oh) and d ⁹(oh).

- Or

(b) Explain brief account on magnetic susceptibility.

Page 5 Code No.: 6791

19. (a) Write a brief account on optical and electronic properties of nanomaterials.

Or

- (b) Write down the principles and application of green synthesis.
- 20. (a) Brief account on structure of isopoly and heteropoly anions.

Or

(b) Discuss the structure and bonding of dinuclear clusters with example of Mo₂Cl₈⁻².

Page 6 Code No.: 6791