(8 pages)

Reg. No. :

Code No.: 41164 E

Sub. Code: JAMA 21/

SAMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Second Semester

Mathematics - Allied

VECTOR CALCULUS AND FOURIER SERIES

(For those who joined in July 2016 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- If $\vec{r} = x\vec{i} + y\vec{j} + 2\vec{k}$ then $\nabla \times \vec{r} =$
 - (a) 0

- If $\nabla \phi$ is solenoid then $\nabla^2 \phi = -$

(d)

- 3.

 $\nabla \times \nabla \varphi$

- div curl f = -

(b)

- (d)
- The line integral of \bar{f} over C is denoted by 5.

- None of these
- Stokes theorem connects
 - line and double integrals
 - line and surface integrals
 - surface and volume integrals
 - line and volume integrals

Code No.: 41164 E

7.
$$\int_{0}^{1} \int_{0}^{1} xy^{2} dy dx =$$

8. If x + y = v, 2x - 3 = u then $\frac{\partial(v, u)}{\partial(x, y)} =$

- (a) $-\frac{1}{5}$ (b) $\frac{1}{5}$

- $f(x) = x \sin x$ is
 - (a) an even function (b) an odd function
 - neither (a) nor (b) (d) a constant function
- 10. If f(x) is an even function then $\int f(x) dx =$
 - (a) 0

- (b) $2\int_{0}^{x} f(x) dx$
- (c) $2\int f(x)dx$ (d) Both (b) and (c)

Code No.: 41164 E Page 3

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

(a) If $\vec{r} = \vec{a} \cos wt + \vec{b} \sin wt$, where \vec{a} and \vec{b} are constant vector, prove that $\vec{r} \times \frac{d\vec{r}}{dt} = w(\vec{a} \times \vec{b})$ and $\frac{d^2\bar{\partial}}{dt^2} + w^2\bar{r} = \vec{0}$.

Or

- (b) Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ are (1, 1, 1).
- 12. (a) Evaluate $I = \int_{0}^{a} dx \int_{0}^{b\sqrt{1-(x^{2}/a^{2})}} x^{3} y \, dy$.

Or

(b) Evaluate $I = \int_{0}^{\pi} \int_{0}^{\pi/2} \int_{0}^{k} r^{2} \sin \theta \, dr \, d\theta \, d\phi$.

Page 4 Code No.: 41164 E [P.T.O.]

Evaluate $\int_{0}^{(4,2)} \vec{f} \cdot d\vec{r}$ along the parabola $y^2 = x$ then prove that $\vec{f} = (x + y)\vec{i} + (y - x)\vec{j}$.

Or

- Find t=1 the work done by the force $\vec{F} = 3xy \vec{i} + 52 \vec{j} + 10x \vec{k}$ along the curve $C: x = t^2 + 1, y = 2t^2, z = t^3$
- State Green's and stokes theorem. 14.

Or

- (b) By using Stoke's theorem prove that $\int\limits_{0}\vec{r},\,d\vec{r}=0\,\text{where}\,\,\vec{r}=x\vec{i}+y\vec{r}+2\vec{k}\,.$
- Find the Fourier series for the function 15. $f(x) = \begin{cases} -1 & \text{in } -\pi \le x < 0 \\ 1, & \text{in } 0 \le x \le \pi \end{cases}$

Or

(b) Find the sine series of f(x) = k in $0 < x < \pi$.

Code No.: 41164 E Page 5

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

Find the value of a so that the vector function $\vec{f} = (\alpha xy - z^3)\vec{i} + (\alpha - z)\vec{j} + (1 - \alpha)$ $xz^2\vec{x}$ is irrigational. Hence find $\varphi(x,y,z)$ such that $\bar{f} = \nabla \phi$.

Or

- (b) Prove:
 - (i) $\nabla \cdot (\vec{f} \times \vec{g}) = g \cdot (\nabla \times f) \vec{f} \cdot (\nabla \times \vec{f})$.
 - (ii) $\nabla \times (\nabla \times \vec{f}) = \nabla (\nabla \cdot \vec{f}) \nabla^2 \vec{f}$.
- 17. (a) Evaluate $I = \iiint xyz \, dx \, dy \, dz$ where D is the region bounded by the positive ocant of the sphere $x^2 + y^2 + z^2 = a^2$.

Or

(b) Evaluate $I = \iiint_D \frac{dx \, dy \, dz}{(x+y+z+1)^3}$ where D is the region bounded by the region x = 0, y = 0, z = 0 x + y + z = 1.

Code No. : 41164 E

18. (a) Evaluate $\int_{0}^{\infty} \vec{f} \cdot d\vec{r}$ where $\vec{f} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ and the curve C is the rectangle in the x-tplane bounded by y = 0, y = b, x = 0, x = a.

Or

- $\iint_{C} \vec{f} \cdot \vec{n} \ ds$ (b) Evaluate $\vec{f} = (x + y^2)\vec{i} - 2x\vec{j} + 2yz\vec{k}$ and S is the surface of the plane 2x + y + yz = 6 is the octant.
- (a) Verify Stoke's theorem for $\vec{f} = y^2 \vec{i} + y \vec{z} xz \vec{k}$ and S is the suffer half of the sphere $x^2 + y^2 + z^2 = a^2, z \ge 0$.

Or

(b) Verify Green's theorem for $\vec{f} = (x^3 - xy^3)\vec{i}$ + $(y^2-2xz)dy$ where C is the square with vertices (0,0), (2,0), (2,2) and (0,2).

Page 7 Code No.: 41164 E

Find the Fourier series for the functions $f(x) = x^2$ in $-\pi \le x \le \pi$ and hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.

Expand $y = \cos 2x$ in a series of sines in the interval $(0, \pi)$.

Code No.: 41164 E