Code No.: 5858 Sub. Code: PPHM14

 $\begin{array}{c} {\rm M.Sc.~(CBCS)~DEGREE~EXAMINATION,} \\ {\rm NOVEMBER~2020.} \end{array}$

First Semester

Physics — Core

NONLINEAR DYNAMICS

(For those who joined in July 2017 onwards)

Time: Three hours Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

1. The condition for overdamping oscillation is

(a) $\alpha < 2w_0$

(b) $\alpha = 2w_0$

(c) $\alpha > 2w_0$

(d) None

(a)
$$\frac{d^2z}{dt^2} + \frac{dx}{dt} + t^2 = 0$$

(b)
$$\frac{d^2x}{dx^2} + \left(\frac{dx}{dt}\right)^2 + t^2 = 0$$

(c)
$$\frac{d^2x}{dt^2} + \frac{dx}{dt} + e^{-t} = 0$$

(d)
$$\frac{dx}{dt} + w_0^2 x = f \cos wt$$

3. The condition for stability is ————

(a)
$$\frac{\left|\delta_{n+2}\right|}{\left|\delta_{n}\right|} < 1$$

(b)
$$\frac{\left|\delta_{n+2}\right|}{\left|\delta_{n}\right|} > 1$$

(c)
$$\frac{\left|\delta_{n+1}\right|}{\left|\delta_{n}\right|} > 1$$

(d)
$$\left| \frac{\delta_{n+1}}{\delta_n} \right| < 1$$

4. When the damping coefficient "b" is ———— unstable state.

(a) +1

(b) -1

(c) +2

(d) -2

5. A sudden qualitative change in dynamics of a system is called ———

- (a) Unification
- (b) Integration
- (c) Fusing
- (d) Bifurcation

Page 2 **Code No.: 5858**

(a)	Linear	(b)	Nonlinear
` /	Shunt	` /	None
` ′		` /	structions exhibi
—— (a)	Self disimilar		
` ′	Self similar		
` ′	Self similar ar	nd self disi	milar
(d)			
	tour set is ension equal to		with non into
(a)	0.431	(b)	0.531
(c)	0.631	(d)	0.731
The	example for	the linea	r dispersive sys
(a)	Solitary waves	s on shallo	w water interface
	Tsunami wave	es	
(b)	Earthquakes		
(b) (c)	-		
(c)	Plucking the s	tring on V	eena
(c) (d)		Vries eq	uation is a sir
(c) (d)	Korteweg-de ——— dispersi	Vries eq	uation is a sir
(c) (d) The	Korteweg-de ——— dispersi Linear	Vries equeve system (b)	uation is a sir

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Differentiate between linear and non linear systems.

Or

- (b) Discuss the motion of a tree linear harmonic oscillator.
- 12. (a) Study the occurrence of Transcritical bifurcation.

Or

- (b) Explain limiting cycle of motion.
- 13. (a) Write down the important features associated with Chua's circuit.

Or

- (b) Draw the circuit diagram of BJT Colpitt's oscillator and its equivalent circuit. Also set the three autonomous differential equations.
- 14. (a) Explain the construction and properties of middle third contor set.

Or

(b) Explain the construction and properties of Koch curve.

Page 4 Code No.: 5858 [P.T.O.]

- 15. (a) (i) Explain:
 - (1) Solitary wave and
 - (2) Solition
 - (ii) State any two applications of soliton.

Or

(b) Explain the basic features of John Scott Russels observation of solitary wave.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Obtain the frequency response relations and draw the primary resonance curves for

$$\ddot{x} + \alpha \dot{x} + w_0^2 x + \beta x^3 = f \sin wt.$$

Or

- (b) Analyse the dynamics of damped and driven non linear oscillator.
- 17. (a) Describe Pitchfork bifurcation and also explain super critical and subcritical bifurcation diagrams.

Or

(b) Explain the period doubling phenomenon to Chao's.

Page 5 Code No.: 5858

18. (a) Construct the suitable analog simulators circuit to study the dynamics of the Duffing oscillator.

$$\ddot{x} + \alpha \dot{x} + w_0^2 x + \beta x^3 = f \sin wt \alpha > 0.$$

Or

- (b) Study the Chaotic dynamics of simple non autonomous MLC circuit with schematic diagram.
- 19. (a) Explain the construction of Sierpinski triangle and give the properties of fractals.

Or

- (b) Explain the construction and properties of:
 - (i) Julia set and
 - (ii) Mandelbret set fractals. Also write the applications of fractals.
- 20. (a) Starting from Korteweg-de Vries (KDV) equation, explain the solitary and enoidal waves.

Or

(b) Explain the numerical experiment of Zabusky and Krushal.

Page 6 Code No.: 5858