(8 pages) **Reg. No. :**

Code No.: 7402 Sub. Code : PESM 31

M.A. (CBCS) DEGREE EXAMINATION, NOVEMBER 2020.

Third Semester

Economics-Core

MATHEMATICAL METHODS FOR ECONOMICS

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. If all the elements of a matrix is zero, the matrix is called ———.
 - (a) Row matrix
 - (b) Rectangular matrix
 - (c) Null matrix
 - (d) Column matrix

2. If
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 10 & 2 \\ 8 & 6 \end{bmatrix}$, find $A - B$
(a) $\begin{bmatrix} 9 & -3 \\ 2 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} -9 & 3 \\ -2 & 1 \end{bmatrix}$
(c) $\begin{bmatrix} -9 & -3 \\ 2 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 9 & 3 \\ -2 & -1 \end{bmatrix}$
3. Determinant of co-different matrix of $\begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$
(a) 8 (b) 88
(c) -88 (d) -8
4. In Input-output table every row explains the
(a) Output (b) Input
(c) Both (a) and (b) (d) Neither (a) nor (b)
5. If $y = x^{10}$, $\frac{dy}{dx} =$
(a) $10x^{10}$ (b) $10x^9$

(c) $9x^{10}$ (d) $9x^9$

Page 2 Code No. : 7402

6. First order condition of maximum is

	(a)	$\frac{dy}{dx} \neq 0$	(b)	$\frac{d^2y}{dx^2} > 0$
	(c)	$\frac{dy}{dx} = 0$	(d)	$\frac{d^2y}{dx^2} < 0$
7.	$\int \frac{1}{x^7} dx$ is			
	(a)	$\frac{x^6}{6} + c$	(b)	$\frac{x^{-7}}{-7} + c$
	(c)	$\frac{x^7}{7} + c$	(d)	$\frac{x^{-6}}{-6} + c$
8.	$\int_{1}^{2} x^{3} dx$	dx is		
	(a)	$\frac{15}{4}$	(b)	$\frac{4}{15}$

- (c) 15 (d) 4
- 9. The objective of the linear programming will be
 - (a) Maximize some numerical value
 - (b) Minimize some numerical value
 - (c) Both (a) and (b)
 - (d) Neither (a) nor (b)

Page 3 Code No. : 7402

- 10. If all the constraints of the given linear programming model are satisfied by the solution of the model, then that solution is known as
 - (a) Optimal
 - (b) Feasible
 - (c) Infeasible
 - (d) Alternate optimum

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, by choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Explain the properties of determinant.

(b) Given
$$A = \begin{bmatrix} 8 & 1 & -2 \\ -9 & 9 & 9 \\ 6 & -3 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 & 3 \\ 5 & 6 & -4 \\ 7 & -9 & 8 \end{bmatrix}$
and $C = \begin{bmatrix} 4 & -3 & 1 \\ 6 & 2 & -1 \\ 0 & -4 & 3 \end{bmatrix}$ show that
 $A(B+C) = AB + AC$.

Page 4	Code No. : 7402
	[P.T.O.]

- 12. (a) Solve the following equations by using Cramer's Rule. $2x_1 + 3x_2 = 13$ $x_1 + 7x_2 = 23$
 - Or
 - (b) Solve the following pairs of simultaneous equations. 3x + 2y = 132x + 3y = 12
- 13. (a) For the total utility function U = (x+7)(3x+9y) find marginal utilities of x and y at x = 1 and y = 2.

Or

(b) Find the elasticity of demand and MR, at p=2, if the demand function $q=30-5q-p^2$.

14. (a) Integrate :
$$\int (8x^3 - 3x^2 + x - 1) dx$$
.

Or

(b) Calculate the area beneath the curve $y = x^3$ between x = 3 and x = 6.

Page 5 Code No. : 7402

15. (a) What is linear programming and state its components?

Or

(b) What do you mean by an optimal, basic and feasible solution to a linear programming problem? Discuss with examples.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

- 16. (a) Explain the types of matrixes with examples.
 - \mathbf{Or}
 - (b) Find the inverse of the matrix $A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & -2 & -3 \\ 3 & 1 & 1 \end{bmatrix}$.
- 17. (a) Solve the following set of linear simultaneous equations :

$$2x_1 + 4x_2 - x_3 = 15$$

$$x_1 - 3x_2 + 2x_3 = -5.$$

$$6x_1 + 5x_2 + x_3 = 28$$

Or

Page 6 Code No. : 7402

(b) Solve the following equations by using Cramer's rule

 $2x_1 + 3x_2 = 13 \\ x_1 + 7x_2 = 23$

18. (a) Consider a monopolist who faces a linear demand function p = 100 - 2q and a linear total cost function c = 50 + 2q. Determine the optimum level of output, price, total revenue, total cost and profit, under (a) profit maximisation.

Or

- (b) Investigate the maxima and minima of the function $y = 3x^4 10x^3 + 6x^2 + 5$.
- 19. (a) The demand function for a commodity P = 25D 20. The supply function P = 5D + 60. Find the producer's surplus.

\mathbf{Or}

(b) The demand function for a commodity P = 30 - 2D. The supply function P = 3D. Find consumer's surplus.

Page 7 Code No. : 7402

20. (a) Solve the following LP problem graphically Maximize $Z = 100x_1 + 50x_2$ Subject to $4x_1 + 6x_2 \le 24$ $x_1 \le 4$ $x_2 \le \frac{4}{3}$ $x_1, x_2 \ge 0.$ Or

(b) Solve the following LP problem using graphical method. Maximize $z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 6$ $7x_1 + x_2 \ge 14$ $x_1 \text{ and } x_2 \ge 0.$

Page 8 Code No. : 7402