(7 pages)

Reg. No. :

Code No.: 7136

Sub. Code: PMAM 44

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Fourth Semester

Mathematics - Core

TOPOLOGY - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The space R_K (K topology) is
 - (a) T₄

- (b) $T_{3\frac{1}{2}}$ but not T_4
- (c) T_3 but not $T_{3\frac{1}{\alpha}}$
- (d) T_2 but not T_3
- 2. Regular space is also known as
 - (a) T_4

(b) T

(c) $T_{3\frac{1}{2}}$

(d) T

- 3. Which one of the following is normal
 - (a) R₁
 - (b) R₁²
 - (c) $S_0 \times \overline{S_0}$
 - (d) R^J , J is uncountable
- A space X is completely regular then it is homeomorphic to a subspace of
 - (a) [0,1]^J
 - (b) \mathbb{R}^n where n is a finite
 - (c) R^J
 - (d) $(0,1)^J$ where n is a finite number and J is uncountable
- 5. Tietze extension theorem implies
 - (a) The Urysohn Metrization theorem
 - (b) Heine-Borel Theorem
 - (c) The Urysohn Lemma
 - (d) The Tychonof Theorem

Page 2 Code No. : 7136

- 6. Indicate the correct answer
 - (a) Subspace of a Normal space is normal
 - (b) Product of Normal spaces is normal
 - (c) R_l^2 is completely regular
 - (d) R_K is regular but not normal
- 7. Which one of the following is locally finite in R?
 - (a) $\{(n-1,n+1): n \in Z\}$
 - (b) $\left\{\left(0,\frac{1}{n}:n\in Z_+\right)\right\}$
 - (c) $\left\{ \left(\frac{1}{n+1}, \frac{1}{n}\right) : n \in \mathbb{Z}_+ \right\}$
 - (d) $\{(x, x+1): x \in R\}$
- 8. Let $A = \{(n-1, n+1) : n \in Z\}$. Which of the following refine A.
 - (a) $\left\{\left(n-\frac{1}{2},\;n+\frac{3}{2}\right):n\in Z_{+}\right\}$
 - (b) $\left\{ n + \frac{1}{2}, n + \frac{3}{2} \right\} : n \in \mathbb{Z}_+ \right\}$
 - (c) $\left\{\left(n-\frac{1}{2},n+2\right):n\in Z_+\right\}$
 - (d) $\{(x, x+1): x \in R\}$

Page 3 Code No.: 7136

- 9. Which one of the following is false?
 - (a) Any set X with discrete topology is a Baire space
 - (b) The set of irrationals is not a Baire spaces
 - (c) [0, 1] is a Baire space
 - (d) Every locally compact space is a Baire space
- 10. Which of the following is not true?
 - (a) Every non empty open subset of the set of irrational numbers is of first category
 - (b) Open subspace of a Baire space is a Baire space
 - (c) Rationals as a subspace of real numbers is not a Baire space
 - (d) If $X = \bigcup_{n=1}^{x} B_n$ and X is a Baire space with

 $B_1 \neq \phi$, then at least one of \overline{B}_n has nonempty interior

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Define \mathbb{R}_K topological space. Prove that the space \mathbb{R}_K is Hausdorff but not regular.

Or

(b) Prove that Ri2 is not a Lindeloff space.

Page 4 Code No.: 7136

[P.T.O.]

12. (a) Show that the compact subset of a Hausdorff space is closed. Give an example of a closed subset of a Hausdorff space which is not compact.

Or

- (b) Show that a compact Hausdorff space is normal.
- (a) Prove that Tietze extension theorem implies the Urysohn Lemma.

Or

- (b) State and prove imbedding theorem.
- 14. (a) Let A be a locally finite collection of subsets of X. Then prove that
 - (i) The collection $B = {\overline{A} : A \in A}$ is locally finite

(ii)
$$\overline{\bigcup_{A \in A}} = \overline{\bigcup_{A \in A}}$$

Or

- (b) Define finite intersection property. Let X be a set and D be the set of all subsets of X that is maximal with respect to finite intersection property. Show that:
 - (i) $x \in \overline{A} \forall A \in D$ if and only if every neighborhood of x belongs to D.
 - (ii) Let $A \in D$. Then prove that $B \supset A \Rightarrow B \in D$

Page 5 Code No. : 7136

15. (a) Define second category space. Prove that any open subspace Y of a Baire space X is also a Baire space.

Or

(b) Define a Baire space. Whether Q the set of rationals as a space is a Baire space? What about if we consider Q as a subspace of real numbers space. Justify your answer

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) What are the countability axioms. Prove that the space R_L satisfies all the countability axioms but the second.

Or

- (b) Prove that a normal space is a regular space but not conversely.
- 17. (a) Define a regular space, normal space and a second countable space. Prove that every regular second countable space is normal.

Or

Page 6 Code No.: 7136

- (b) (i) Prove that every normal space is completely regular and completely regular space is regular.
 - (ii) Prove that product of completely regular spaces is completely regular.
- 18. (a) State and prove Tietze extension theorem.

Or

- (b) Prove that every regular second countable space is metrizable.
- 19. (a) Let X be a metrizable space. If A is an open covering of X, then prove that there is an open covering ξ of X refining A that is countably locally finite.

Or

- (b) State and prove Tychonoff theorem.
- 20. (a) State and prove Baire Category theorem.

Or

(b) Let X be a space; let (Y,d) be a metric space. Let f_n: X → Y be a sequence of continuous functions such that f_n(x) → f(x) for all x ∈ X, where f: X → Y. If X is a Baire space, prove that the set of points at which f is continuous is dense in X.

Page 7 Code No.: 7136