(7 pages)

Reg. No. :

Code No.: 7167

Sub. Code: PCHM 43

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Fourth Semester

Chemistry - Core

PHYSICAL CHEMISTRY - IV

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- For a linear diatomic simple harmonic oscillator model, origin of perpendicular vibrations is
 - (a) $\Delta J = 0$ and $\Delta v = \pm 1$
 - (b) $\Delta J = \pm 1$ and $\Delta v = \pm 1$
 - (c) $\Delta J = 0$ and $\Delta v = \pm 1, \pm 2, \pm 3$
 - (d) Both (a) and (b)

- 2. The weak Ir band arises due to the v = 1 to v = 2 transition is known as
 - (a) fundamental band
 - (b) first overtone band
 - (c) second overtone band
 - (d) hot band
- 3. Which of the following is called red Laser?
 - (a) He-Ne Laser
- b) Ar-Laser
- (c) Ar+Laser
- (d) Kr-Laser
- 4. Which of the following molecules is / are symmetric top?
 - (a) Chloroform
 - (b) Chloromethane
 - (c) Phosphorous trichloride
 - (d) All of these
- The 1967 Nobel prize for the contributions to fast reaction kinetics was won by
 - (a) Manfred Eigen
- (b) Norrish
- (c) Porter
- (d) All of them

Page 2

Code No.: 7167

- 6. Absolute Reaction Rate Theory (ARRT) was developed by
 - (a) Eyring
- (b) Polanyi

- (c) Evans
- (d) All of them
- 7. For a reaction between two ions, the plot of log k versus √μ gives a straight line with If slope equal to +2. What are the charges of the ions?
 - (a) -2 and -1
 - (b) -2 and +1
 - (c) +2 and -1
 - (d) Both (b) and (c) are correct
- 8. The reaction, $H + O_2 \rightarrow HO + O$, is an example of
 - (a) chain initiation
 - (b) propagation
 - (c) chain branching
 - (d) termination

Page 3 Code No. : 7167

- 9. Which of the following processes is an example of heterogeneous catalysis involving solid catalyst and gaseous reactants?
 - (a) Hydrogenation of alkenes by Wilkinson catalyst
 - (b) Haber process for the production of ammonia
 - (c) Contact process for the manufacture of sulphuric acid
 - (d) All of these
- In enzyme catalysis the rate / [S] vs rate plot is called
 - (a) Michalies Menton plot
 - (b) Lineweaver Burk plot
 - (c) Eadie's plot
 - (d) Langmuir Rideal Plot

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b), each answer should not exceed 250 words.

 (a) How many modes of vibrations are there for H₂O molecule? Sketch the symmetry of fundamental modes of vibrations of them.

Or

(b) The force constant of CO molecule is $1840~{\rm Nm^{-1}}$. Calculate the vibrational frequency in cm⁻¹. The atomic masses are $^{12}{\rm C}=19.923\times 10^{-27}~{\rm kg}$ and ${\rm C^{16}O}=26.564\times 10^{-27}~{\rm kg}$.

Page 4

Code No.: 7167

[P.T.O.]

(a) Describe the quantum theory of Raman effect.

Or

- (b) What do you mean by polarized and depolarized Raman line? In what way it is related to the symmetry of vibrations?
- (a) Discuss the kinetics of reactions taking place in flow systems involving stopped flow.

Or

- (b) Describe the Lindemann hypothesis for the study of unimolecular reaction.
- (a) Derive Hammett equation and give the significances of substituents and reaction constants.

Or

- (b) What are chain reactions? Give their characteristics.
- (a) Give the expression for BET adsorption isotherm and explain the terms in it.

Or

(b) Explain the effect of pH and temperature on the rate of enzyme catalysed reactions.

Page 5 Code No.: 7167

PART C - (5 \times 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b), each answer should not exceed 600 words.

16. (a) Given that $\bar{\gamma}_e = 536.10$ cm⁻¹ and $x_e \, \bar{\gamma}_e = 3.4$ cm⁻¹ for ²³Na¹⁹F gas. Calculate the frequencies of first and second vibrational overtone transitions.

Or

- (b) Describe the vibration-rotation spectra of diatomic molecules with the help of energy level diagram and give the selection rules for P, Q and R branch lines.
- (a) Describe the principle, characteristics and types of Lasers used in Raman spectroscopy.

Or

- (b) Describe the applications of IR and Raman spectroscopy in the determination of structure of molecules with proper examples.
- (a) Describe the thermodynamic formulation of transition state theory.

Or

- (b) (i) Describe the application of NMR method in the study of fast reactions.
 - (ii) Write a note on Slater theory of unimolecular reactions.

Page 6 Code No. : 7167

 (a) Derive an equation for the influence of pressure of solvent on rate and explain the significance of volume of activation.

Or

- (b) Explain the kinetics and mechanism of H₂·Br₂ reaction with the help of steady state approximation.
- (a) Discuss Freundlich adsorption isotherm and Langmuir adsorption isotherm.

Or

(b) What do you mean by acidity function? Explain the general pattern of acid-base catalysed <u>reactions with</u> the help of log k vs pH plot.