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M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2024.
Fourth Semester .
Mathematics — Core
ADVANCED ALGEBRA — 11
(For those who joinpd in July 2021 — 2022)
Time : Three hours Maximum : 75 marks
Prﬁlu RT A — (10 x 1 = 10 marks)
- Answer ALL questions.

Choose the correct answer :

1. A complex number is said to be
number if it is algebraic over the field of rational
numbers,
(a) real

‘(b) 1maginary
(¢) algebraic

" (d) extension

The element ae K is said to be algebraic of

over I if it satisfies a non zero
polynomial over F of degree n but no non zero
polynomial of lower degree.

(a) dimension r (b) degree n

(c) basisn (d) extension

A polynomial of degree n over a field can have
roots in any extension field.

(a) atleast n (b) atmost n

(¢) exactly n (d) less than

If E is a minimal extension of the field F in which
f(x) has n roots where n=degf(x) then E is

called

(a) ring (b) basis

(¢) splitting field (d) normal
If G is a group of automorphisms of K, then the
fixed field of GG is the set of all elements ae K

such that o(a)= forall ae G.

(a) 1 (b) O
() a d) e
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10.

The automorphism o of K is in ——M——— if
and only 1f 0'((1) =g forevery ae IF.

(@) G(K, F) (b G(K K)
© olG) @ Glp)

Any two - fields having the same
number of elements are isomorphic.

(a) finite (b) infinite

(¢) equal (d) fixed

For every prime number p and every positive

integer m there is a unique field having
elements.

(a) p (by p“

c) e d) p"

The only irreducible polynomials over the field of
real numbers are of degree ——— or
(a) 0,1 (b)y 1,2

() 0,2 (d) 0, »

norm of x is defined by

If xe@® then
V) =

(a) xx’ (b) xx
() Lid) et
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11.

12.

13.

PART B — (5 x 5 = 25 marks)

Answer ALL questions, choosing either (a) or (b).

(a)

(b)

(a)

(a)

(b)

If L 1s an algebraic extension of K and if K is
an algebraic extension of F' then prove that L
is an algebraic extension of F.

ke :
If ae K is of algebraic of degree n over F,
then prove that [F(a): F]=n.

State and prove remainder theorem.
Or
If f(x)e F[x] is irreducible then prove that

(i) If the characteristic of F is 0, f(x) has
no multiple roots

(ii) If the characteristic of F is p#0, f(x) -

has a multiple root only if it is of the
form f(x)= g(:r"). '

Let K be the splitting field of f(x) in F[].
Let p(x) be an irreducible factor of f(x) in
Flx]. If the roots of p(x) are a,, a,...,a, then

prove that for each i there exist an
automorphism o, in G(K, F) such that

g; (gl ) =a;.
Or
Prove that a fixed field of GG is a subfield of K.
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14. (a) Prove that if the finite field /' has p
elements then the polynomial x*" —x in Flx]
factors in F[."c] ag xfililp = ]_[(x—/l).

AelF
Or
(b) Prove that if R is a ring in which px =0 for
all xe R. Where p is a prime number, then

P

o e Tl e

15, (a) State and prove Lagrange identity.
' Or
(b) Prove that the adjoint in @ satisfies
() e R g
() (Gx+pf=oc*+p*,
() (P =y*x*
PART C — (5 x 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that if L is a finite extension of K and
if K 1s a finite extension of [ then L 1s a finite

extension of E. More over
[L:F]=[L:K]K:F].
Or

(b) Show that the element a € K is algebraic over
Fif and only if F(a) is a finite extension of F.
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18.

(a)

(b)

(a)

(b)

(a)

(b)

Prove that if F' is of characteristic 0 and if
a, b are algebraic over F, then there exists an
element ¢ e F(a,b) such that F(a,b)= F(c).

Or
If px) is a polynomial in F[x] of degree
n=1, and is irreducible over K then prove

that there is an extension E of F such that
[£: F]=n in which p(x) has a root.

Prove that if K is a finite extension of £, then
G(K,F) is a finite group and its order
o(G(K, F)) satisfies o(G(K, ') < [K : F].

- Oy

Prove that K is a normal extension of F if and
only if K is the splitting field of some
polynomial over F. :

Let G be a finite abelian group with the
property x" =e¢ is satisfied by atmost n
elements of (¢ for every integer n. Then prove
that & 1s a cyclic group. .

Or

State and prove Wedderburn theorem.
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(a)

(b)

State and prove Frobenius theorem.
Or

Prove that every positive integer can be
expressed as the sum of squares of four
integers.
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