10	and the second
18	pages)
10	pageo

Reg. No.:

Code No.: 7754 Sub. Code: WMAE 11/ VMAE 11

> M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.

> > First Semester

Mathematics

Elective I – GRAPH THEORY AND APPLICATIONS

(For those who joined in July 2023 only)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- A simple graph G is called $-\operatorname{if} G^{\sim}G^{\circ}$.
 - (a) Self-complementary
 - (b) Non Adjacent
 - (c) Disconnected
 - (d) Isomorphic

- of G is a complete subgraph of G.
 - (a) Induced subgraph (b) Proper subgraph
- - (c) Clique
- (d) Spanning subgraph
- A 3 regular graph is called a -
 - (a) Cubic graph
- (b) Spanning graph
- (c) Degree sequence
- (d) Hyper graph
- A graph G is r connected if $k(G) \ge r$. Also, G is r – edge connected if –
 - (a) $\lambda(G) \geq r$
- (b) $\lambda(G) = r$
- (c) $\lambda(G) > r$
- (d) $\lambda(G) < r$
- A of a graph is a maximal nonseparable of G. If G has no cut vertex.
 - (a) Path

- (b) Cycle
- (c) Block
- (d) Subgraph
- An edge e is a of G if $\{e\}$ is an edge cut of G.
 - (a) Vertex cut
- (b) Cut edge
- (c) Cut vertex
- (d) Edge cut

Code No.: 7754 Page 2

7.	Let G be a connected graph, then the diameter of G is defined as ———————————————————————————————————	11.	A — is G is a set of independent edges. (a) Matching (b) Spanning (c) Complement (d) Connected A — of a graph G is a spanning subgraph of G.
	(c) $\max\{d(u,v): u,v \notin V(G)\}$ (d) $\min\{d(u,v): u,v \notin V(G)\}$		(a) Factor(b) Unsaturated(c) Matching(d) Decomposition
8.	The — of a vertex u of T is the maximum number of edges in any branch at u .	13.	An — in a graph G is a spanning trail in G that contains all the edges of G . (a) Hamiltonian walk (b) Euler trail
	(a) Centroid(b) Weight(c) Branch(d) Eccentricity		(c) Euler walk (d) Hamiltonian trail
9.	A vertex v of G is called ———————————————————————————————————	·14.	A graph G is called ———————————————————————————————————
	(c) Central vertex (d) Eccentricity		(c) Euler (d) Closure
10.	A subset M of the edge set E of a loopless graph G is called ———————————————————————————————————	15.	The — of a graph G is the minimum number colors needed for a proper vertex coloring of G .
	(a) Independent (b) Covering		(a) Chromatic number (b) Boundary
	(c) Regular (d) Spanning		(c) Spectrum (d) Decomposition
	Page 3 Code No. : 7754		Page 4 Code No. : 7754
,			[P.T.O.]

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL the questions, choosing either (a) or (b).

16. (a) If G is simple and $\delta \ge \frac{n-1}{2}$, then prove that G is connected.

Or

- (b) If the simple graphs G_1 and G_2 are isomorphic then prove that $L(G_1)$ and $L(G_2)$ are isomorphic.
- 17. (a) Show that a vertex v of a connected graph G with atleast three vertices is a cut vertex of G if and only if there exists vertices u and w of G distinct from v such that v is in every u-w path in G.

Or

- (b) Prove that a connected simple graph G is 3-edge connected if and only if every edge of G is the exact intersection of the edge sets of two cycles of G.
- 18. (a) Show that a simple graph is a tree if and only if any two distinct vertices are connected by a unique path.

Or

Page 5 Code No.: 7754

- (b) Prove that a connected graph G with at least two vertices is a tree if and only if its degree sequence $(d_1, d_2, ..., d_n)$ satisfies the condition: $\sum_{i=1}^n d_i = 2(n-1) \text{ with } d_i > 0 \text{ for each } i.$
- 19. (a) Show that a $k(\ge 1)$ regular bipartite graph is 1-factorable.

Or

- (b) Let G be a connected graph of even order n. If G is claw-free, then prove that G has a 1-factor.
- 20. (a) Let G be a simple graph with $n \ge 3$ vertices. If for every pair of nonadjacent vertices u,v of G, $d(u)+d(v)\ge n$, then prove that G is Hamiltonian.

Or

(b) If G is k-critical, then prove that $\delta(G) \ge n-1$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b)

21. (a) If G is a line graph, then prove that $K_{1,3}$ is a forbidden subgraph of G.

Or

Page 6 Code No.: 7754

- (b) Let G and G' be simple connected graphs with isomorphic line graphs. Then prove that G and G' are isomorphic unless one of them is $K_{1,3}$ and the other is K_3 .
- 22. (a) Show that for any loopless connected graph $G, k(G) \le \lambda(G) \le \delta(G)$.

Or

- (b) Prove that the connectivity and edge connectivity of a simple cubic graph G are equal.
- 23. (a) If e is not a loop of a connected graph, then prove that $\tau(G) = \tau(G e) + \tau(G \circ e)$.

Or

- (b) Show that every tree has a center consisting of either a single vertex or two adjacent vertices.
- 24. (a) Prove that a matching M of a graph G is maximum if and only if G has no M-argumenting path.

Or

(b) Show that for any graph G for which $\delta > 0, \alpha' + \beta' = n$.

25. (a) Prove that for a nontrivial connected graph G, the following statements are equivalent:

- (i) G is Eulerian.
- (ii) The degree of each vertex of G is even positive integer.
- (iii) G is an edge-disjoint union of cycles.

Or

(b) Show that for any simple graph G, $2\sqrt{n} \le \chi + \chi^c \le n+1 \text{ and } n \le \chi \chi^c \le \left(\frac{n+1}{2}\right)^2.$

Page 7 Code No.: 7754

Page 8 Code No.: 7754