Reg. No. :

Code No.: 20653 E Sub. Code: EMMA 12

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First Semester

Mathematics - Core

DIFFERENTIAL CALCULUS

(For those who joined in July 2023 onwards)

Maximum: 75 marks Time: Three hours

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer:

- $D^n(ax+b)^{-1} =$ _____
 - (a) $(-1)^n a^n (ax+b)^{-n-1}$
 - (b) $(-1)^n n! a^n (ax+b)^{-n-1}$
 - $-(-1)^n a^n (ax+b)^{-n}$
 - (d) $(-1)^n n! a^n (ax+b)^{-n}$

- $D^n(\cos x) =$
 - (a) $\cos\left(\frac{n\pi}{2} + x\right)$ (b) $\sin\left(\frac{n\pi}{2} + x\right)$

 - (c) $\cos \frac{n\pi}{2} x$ (d) $\sin \frac{n\pi}{2} x$
- If z = f(u) and $u = \varphi(x, y)$ (x, y) are independent variables), then $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$
 - (a) $\frac{\partial z}{\partial u} \frac{du}{dx}$ (b) $\frac{\partial z}{\partial u} \frac{du}{dy}$

 - (c) $\frac{dz}{du} \frac{\partial u}{\partial x}$ (d) $\frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}$
- 4. If $x^3 + y^3 = 3axy$, $\frac{dy}{dx} =$ _____

 - (a) $\frac{x^2 ay}{y^2 ax}$ (b) $\frac{y^2 ax}{x^2 ay}$
 - (c) $\frac{ax y^2}{x^2 ay}$ (d) $\frac{ay x^2}{y^2 ax}$

Page 2 Code No.: 20653 E

- $f(x,y) = \frac{x^3 y^3}{x + y}$ is a homogeneous function of degree
 - (a) 2 (b) 4
- - (c) 3 (d) 1
- If f(x,y) is a homogeneous function of degree n,
 - (a) $f(\lambda x, y) = \lambda^n f(x, y)$
 - (b) $f(x, \lambda y) = \lambda^n f(x, y)$
 - (c) $f(\lambda x, \lambda y) = \lambda^n f(x, y)$
 - (d) $f(\lambda x, \lambda y) = \lambda^{2n} f(x, y)$
- 7. The envelope of the family of curves $\frac{x\cos\alpha}{a} + \frac{y\sin\alpha}{b} = 1$ where α is the parameter and a and b are constants is ____
 - (a) a circle
- (b) an ellipse
- (c) a straight line
 - (d) a parabola
- The evolute of a curve is the _____ of the normals to the curve.
 - (a) involute
- (b) evolute
- (c) envelope
- (d) normal

Page 3 Code No.: 20653 E

- The radius of curvature at the point $x = \frac{\pi}{2}$ on the curve $y = \sin x$ is _____
- (b) -1
- (c) 0 (d) 2
- 10. The centre of curvature of the curve $xy = c^2$ at the point (c, c) is _____

 - (a) (c, c) (b) (2c, c)
 - (c) (c, 2c) (d) (2c, 2c)

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If $y = \log(ax + b)$, find y_n .

Or

- (b) If $xy = ae^x + be^{-x}$, prove that $x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy = 0.$
- 12. (a) If $u = \log \frac{x^2 + y^2}{xy}$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

Or

(b) Find $\frac{du}{dt}$ where $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$.

Page 4 Code No.: 20653 E

[P.T.O]

13. (a) Verify Euler's theorem for the function $u = x^3 - 2x^2y + 3xy^2 + y^3$

Or

- (b) If $u = \sin\left(\frac{x^2 + y^2}{x + y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{x^2 + y^2}{x + y}\cos\left(\frac{x^2 + y^2}{x + y}\right).$
- 14. (a) Find the envelope of the family of circles $x^2 + y^2 - 2ax \cos\theta - 2ay \sin\theta = c^2 (\theta - ay \sin\theta)$ parameter).

Or

- Find the envelope of the family of curves $y = m^2x + am$ (m-parameter).
- Find the radius of curvature of the curve 15. (a) $r = a(1 - \cos \theta)$.

Or

(b) Find the centre of curvature of the curve $y = x \log x$ at the point where $y_1 = 0$.

Page 5 Code No. : 20653 E

PART C - (5 × 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

 $D^n(\cos x \cos 2x \cos 3x)$ 16. (a) Find (i) (ii) $D^n \left(\log \frac{2x+3}{3x+2} \right)$.

- (b) If $y = \sin(m \sin^{-1} x)$, that prove $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$
- 17. (a) If $V = (x^2 + y^2 + z^2)^{-1/2}$, prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0.$

- (b) If $x = e^{-t}\cos\theta$, $y = e^{-t}\sin\theta$, prove that $\frac{\partial t}{\partial x} = \frac{-x}{x^2 + y^2}$ and $\frac{\partial \theta}{\partial x} = \frac{-y}{x^2 + y^2}$.
- 18. (a) State and prove Euler's theorem.

(b) If $u = \tan^{-1} \left(\frac{y^2}{x} \right)$, prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \sin 2u \sin^{2} u.$

Page 6 Code No. : 20653 E

19. (a) Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where $a^2 + b^2 = k^2$ and k is a constant.

Or

- (b) Prove that the envelope of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a^2 + b^2 = c^2)$ are $x + y = \pm c$ and $x - y = \pm c$.
- 20. (a) Find the radius of curvature at the point 't' of the curve $x = a(\cos t + t \sin t)$; $y = a(\sin t - t \cos t).$

Or

(b) Show that the evolute of the cycloid $x = a(\theta - \sin \theta)$; $y = a(1 - \cos \theta)$ is another cycloid.

Page 7 Code No.: 20653 E