(8 pages)

Reg. No. :

Code No.: 6353

Sub. Code: HMAM 13

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2014.

First Semester

Mathematics

PROBABILITY AND STATISTICS

(For those who joined in July 2012 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. What is the value of $P(C_1/C_1)$?
 - (a) 1

(b) C

(c) 0

(d) ½

- 2. If $P(C_1) = \frac{3}{8}$ and $P(C_2/C_1) = \frac{5}{7}$ then the value of $P(C_1 \cap C_2)$ is
 - (a) $\frac{3}{7}$

(b) $\frac{5}{8}$

(c) $\frac{56}{15}$

- (d) $\frac{15}{56}$
- 3. Let X has a binomial distribution. If mean = $\frac{7}{2}$ and variance = $\frac{7}{4}$, what is the value of n?
 - (a) 7

(b) 4

(c) 2

- (d) $\frac{1}{2}$
- 4. Suppose that X has a Poisson distribution with $\mu = 2$. The value of variance = _____.
 - (a) 4

(b) 2

(c) 1

- (d) 0
- 5. A function of one or more random variables that does not depend upon any unknown parameter is called ————.
 - (a) distribution
- (b) sampling
- (c) density function
- d) statistic

Page 2 Code No.: 6353

- Let X have a p.d.f. $f(x) = (\frac{1}{2})^x$, $x = 1,2,3,\cdots$, zero 6. elsewhere. The p.d.f. of $Y = X^3$ is given by g(y) =-, $y = 1, 8, 27, \dots$, zero elsewhere.

- (c) $\left(\frac{1}{3}\right)^y$ (d) $\left(\frac{1}{2}\right)^{\sqrt[3]{y}}$
- If X_1, X_2, \dots, X_n are the random samples with MGF M(t), then the MGF of $\sum_{i=1}^{n} \frac{X_i}{n}$ is _____.
- $[M(t)]^n$ (b) $M\left(\frac{t^n}{n}\right)$

 - (c) $\left[M\left(\frac{1}{t}\right)\right]^n$ (d) $\left[M\left(\frac{t}{n}\right)\right]^n$
- Let X_1, X_2, X_3, X_4 denote a random sample from a 8. distribution that is $N\left(\frac{2}{3}, \frac{1}{18}\right)$. The mean and of the variance random variable $Y = X_1 + X_2 + X_3 + X_4$ is _____
 - (a) $\frac{8}{3}$, $\frac{1}{18}$ (b) $\frac{8}{3}$. $\frac{2}{9}$

- (c) $\frac{3}{8}$, $\frac{9}{2}$ (d) $\frac{2}{3}$, $\frac{1}{18}$

Code No.: 6353 Page 3

- $\lim F_n = F(x)$ at all points and for which F(x) is 9. continuous, here F(x) is called as distribution.
 - limiting
- diverges
- sequence
- none of the above
- 10. A sequence of random variables X_1, X_2, \cdots converges in probability to a random variable X if for every $\epsilon > 0$ $\lim_{n \to \infty} \Pr(|X_n - X| < \epsilon) =$

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b), each answer should not exceed 250 words.

A hand of 5 cards is to be dealt at random 11. (a) without replacement from an ordinary deck of 52 playing cards: Find the conditional probability of an all spade hand (C_2) , relative to the hypothesis that these are atleast 4 spades in the hand (C_1) .

Or

If $P(C_1 > 0)$ and if $C_2, C_3, C_4 \cdots$ are mutually disjoint sets, show that $P(C_2 \cup C_3 \cup \cdots | C_1) =$ $P(C_2|C_1) + P(C_3|C_1) + \cdots$

Page 4

Code No.: 6353

[P.T.O.]

12. (a) If the m.g.f. of a random variable X is $\left(\frac{1}{3} + \frac{2}{3}e^{t}\right)^{5}$, find Pr(X = 2 or 3).

Or

- (b) Let the independent random variables X_1, X_2, X_3 have the same pdf $f(x) = 3x^2$, 0 < x < 1, zero elsewhere. Find the probability that exactly two of these three variables exceed $\frac{1}{2}$.
- 13. (a) Let X_1, X_2, X_3 be a random sample of size 3 from a distribution that is N(6,4). Determine the probability that the largest sample observation exceeds 8.

Or

- (b) Let X have the p.d.f. $f(x) = \frac{1}{3}$, x = 1, 2, 3, zero elsewhere. Find the p.d.f. of Y = 2X + 1.
- 14. (a) Let X_1 and X_2 be independent with normal distributions N(6,1) and N(7,1), respectively. Find $Pr(X_1 > X_2)$.

Or

(b) Let X_1, X_2, X_3, X_4 be four independent identically distributed random variables having the same p.d.f. f(x) = 2x, 0 < x < 1 zero elsewhere. Find the mean and variance of the sum Y of these four random variables.

Page 5 Code No.: 6353

15. (a) Let \overline{X}_n denote the mean of a random sample of size n from a distribution that is $N(\mu, \sigma^2)$. Find the limiting distribution of \overline{X}_n .

Or

(b) Let Z_n be $\chi^2(n)$ and let $W_n = \frac{z_n}{n^2}$. Find the limiting distribution of W_n .

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b), each answer should not exceed 600 words.

- 16. (a) A bowl contains 8 chips. Three of the chips are red and 5 are blue. Four chips are to be drawn successively at random and without replacement.
 - (i) Compute the probability that the colors alternate.
 - (ii) Compute the probability that the first blue chip appears on the third draw.

Or

(b) State and prove Chebyshev's inequality.

Page 6 Code No.: 6353

17. (a) Find the m.g.f. of a Poisson distribution. Also find its mean and variance.

Or

- (b) (i) If the random variable X is $N(\mu, \sigma^2)$, $\sigma^2 > 0$, then the random variable $W = \frac{X \mu}{\sigma}$ is N(0, 1).
 - (ii) Let X be N(2,25). Find Pr(0 < X < 10) and Pr(-8 < X < 1).
- 18. (a) Let X_1, X_2 denote a random sample of size 2 from a distribution with p.d.f. f(x) = 1, 0 < x < 1, zero elsewhere. Find the joint p.d.f. of X_1 and X_2 . Also find the distribution function and the p.d.f. of $Y = \frac{X_1}{X_2}$.

Oı

- (b) Derive p.d.f. of t-distribution.
- 19. (a) Let $F_n(y)$ denote the distribution function of a random variable y_n whose distribution depends upon the positive integer n. Let C denote a constant which does not depend upon n. Prove that the sequence Y_n , $n=1, 2, 3, \cdots$, converges in probability to c iff the limiting distribution of Y_n is degenerate at y=c.

Or

(b) State and prove Central limit theorem.

Page 7 Code No.: 6353

- 20. (a) Let X_1, X_2 be two independent gamma random variables with parameters $\alpha_1 = 3$, $\beta_1 = 3$ and $\alpha_2 = 5$, $\beta_2 = 1$, respectively.
 - (i) Find the m.g.f. of $Y = 2X_1 + 6X_2$
 - (ii) What is the distribution of Y?

Or

(b) Prove that the distribution of $\frac{ns^2}{\sigma^2}$ is $\chi^2(n-1)$

Page 8 Code No.: 6353