Reg. No.:....

Code No.: 20468 E Sub. Code: CAMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2021.

First Semester

Mathematics - Allied

ALGEBRA AND DIFFERENTIAL EQUATIONS

(For those who joined in July 2021 onwards)

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 1 = 10 \text{ marks})$$

Answer ALL questions.

Choose the correct answer.

- 1. The equation $ax^5 + bx^4 + cx^3 + dx^2 + ex + f$ can have ———— roots and no more.
 - (a) 5
 - (b) 3
 - (c) 4
 - (d) none of these

If α, β, γ are the roots of the equation 2. $x^4 + px^3 + qx^2 + rx + s = 0$ then

 $\sum \alpha \beta \gamma = -----$

- (a) -p
- (b) *q*

- (c) -r
- (d)
- How many imaginary roots will occur for the 3. equation $x^7 - 3x^4 + 2x^3 - 1 = 0$?
 - (a) atmost four
 - (b) exactly four
 - atleast four (c)
 - (d) none of these
- To remove the fractional co-efficients from 4. $x^3 - \frac{1}{4}x^2 + \frac{1}{3}x - 1 = 0$ multiply the roots by
 - (a) 4

(b) 3

- (c) -3
- (d) 12
- The characteristics equation of $A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$ is 5.
 - (a) $\lambda^2 2\lambda 3 = 0$ (b) $\lambda^2 2\lambda + 3 = 0$

 - (c) $\lambda^2 3\lambda + 2 = 0$ (d) $\lambda^2 5\lambda + 6 = 0$

Page 2 Code No.: 20468 E

- The eigen values of $\begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}$ are 6.
 - (a) -1, -8
- (b) 1, -8
- (c) 1, 8
- (d) -1, 8
- 7. The Clairaut's equation is ———.
 - (a) y = cx + f(c)
 - (b) y = px + f(p)
 - (c) $\frac{dy}{dx} = \left\{ p + x \frac{dp}{dx} \right\} + f(p) \frac{dp}{dx}$
 - (d) none of these
- The partial differential equation from z = f(y/x)8.
 - (a) px + qy = 0
- (b) px qy = 0
- (c) qx py = 0 (d) none of these
- L(1) =9.
 - (a) $\frac{1}{s}$
- (b) $\frac{1}{s^2}$
- (c) $-\frac{1}{s}$ (d) $-\frac{1}{s^2}$

Page 3 Code No.: 20468 E

$$10. L^{-1} \left[\frac{1}{s-a} \right] = \underline{\hspace{1cm}}.$$

(a) 1

(b) *x*

(c) e^{ax}

(d) None

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Solve the equation $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$ given that one root is $1 - \sqrt{5}$.

Or

- (b) Solve the equation $6x^3 11x^2 + 6x 1 = 0$ whose roots are in harmonic progression.
- 12. (a) Diminish the roots of $x^4 x^3 10x^2 + 4x + 24 = 0$ by 2 and hence solve the original equation.

Or

(b) Solve the equation $x^3 - 4x^2 - 3x + 18 = 0$ given that two of its roots are equal.

Page 4 Code No. : 20468 E [P.T.O.]

13. (a) Find the inverse of the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$.

Or

- (b) Find the eigen value and eigen vectors of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 14. (a) Form a partial differential equation by eliminating the arbitrary function ϕ from $\phi(x+y+z, x^2+y^2-z^2)=0$.

Or

- (b) Eliminate the arbitrary constants a, b and c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 15. (a) (i) Prove that $L[x^n] = \frac{(n+1)}{s^{n+1}}$
 - (ii) If L[f(x)] = F(s) then prove that $L[xf(x)] = \frac{d}{ds}[F(s)].$

Or

(b) Find $L\left(\frac{1-\cos x}{x}\right)$.

Page 5 Code No.: 20468 E

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that the roots of the equation $px^3 + qx^2 + rx + s = 0 \quad \text{are in arithmetic}$ progression if $2q^3 + 27p^2s = 9pqr$.

Or

- (b) Solve the equation $6x^5 x^4 43x^3 + 43x^2 + x 6 = 0$.
- 17. (a) Obtain by Newton's method the root of the equation $x^3 3x + 1 = 0$ which lies between 1 and 2.

Or

- (b) Find by Horner's method the positive root of $x^3 3x + 1 = 0$ correct to three decimal places.
- 18. (a) Find the eigen values and eigen vectors of $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}.$

Or

(b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}.$

Page 6 Code No.: 20468 E

19. (a) Solve: $xyp^2 + (3x^2 - 2y^2)p - 6xy = 0$.

Or

- (b) Solve: $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.
- 20. (a) Find $L^{-1} \left[\frac{cs+d}{(s+a)^2+b^2} \right]$.

Or

(b) Find:
$$L^{-1} \left[\frac{5s+3}{(s-1)(s^2+2s+5)} \right]$$
.

Page 7 Code No.: 20468 E