(6 pages)

Reg. No. :.....

Code No. : 30579 E Sub. Code : SMMA 62

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2020.

Sixth Semester

 ${\it Mathematics-Core}$

NUMBER THEORY

(For those who joined in July 2017 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer

1. The sum of 41+42+...+78 is

(a)	3081	(b)	2261
(c)	2061	(d)	1661

2. If *n* is a given positive integer, and $r \le n$ is also a positive integer, than the value of $nc_r + nc_{r-1}$

- (a) $n+1c_r$ (b) $n+1c_{r+1}$
- (c) nc_r (d) nc_{r+1}

3.	gcd ((-8,-36)=		_		
	(a)	-8	(b)	-4		
	(c)	4	(d)	8		
4.	For any interger $k \neq 0$, $gcd(ka,kb) = ?$					
	(a)	K.gcd(a,b)	(b)	$ig K ig ext{gcd} ig(a, b ig)$		
	(c)	$\gcd(a,b)$	(d)	$k^2 \mathrm{gcd}(a,\!b)$		
5.	The number of odd prime less than 30 is					
	(a)	8	(b)	9		
	(c)	10	(d)	11		
6.	According to division algorithm, every posit even integer can be uniquely written as					
	(a)	4n+1	(b)	4 <i>n</i> +3		
	(c)	4n(or)4n+2	(d)	None of these		
7.	The	congruence $6x \equiv$		(mod 21)		
	has solutions.					
	(a)	3	(b)	2		
	(c)	6	(d)	8		

Page 2 Code No. : 30579 E

8. In ISBN, the tenth digit a_{10} is given by

(a)
$$\sum_{k=1}^{9} Ka_k \pmod{11}$$

(b) $\sum_{k=1}^{9} a_k \pmod{11}$
(c) $\sum_{k=1}^{9} (K+1)a_k \pmod{11}$

(d)
$$\sum_{k=1}^{10} Ka_k (mod 11)$$

9. The value of ϕ (225) is

(a)	15	(b)	45
(c)	75	(d)	120

- 10. If P is an odd prime find the remainder when $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1}$ is divided by P.
 - (a) 1 (b) 2
 - (c) $\frac{p-1}{2}$ (d) p-1

Page 3 Code No. : 30579 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 11. (a) (i) Prove that the sum of first n natural numbers is a triangular number.
 - (ii) The sum of any 2 consecutive triangular numbers is a perfect square.

Or

- (b) For $n \ge 2$, Find the value of $\begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} + \dots + \begin{pmatrix} n\\2 \end{pmatrix} + \begin{pmatrix} n+1\\3 \end{pmatrix}$.
- 12. (a) Let a,b,c be integers no two of which are zero. Show that $d = \gcd(a,b,c)$

 $d = \gcd(\gcd(a,b),c)$

$$= \gcd(a, b, c) = (a, \gcd(b, c))$$

Or

- (b) Prove that gcd(a, b).1cm(a, b) = ab for positive integers.
- 13. (a) Find the prime factorization of
 - (i) 10140
 - (ii) 36000

(b) If P_n is the n^{th} prime number, then prove that $P_n \leq 2^{2^{n-1}}$.

Page 4 Code No. : 30579 E [P.T.O.] 14. (a) Calculate $41^{65} \equiv 6 \pmod{7}$.

 \mathbf{Or}

- (b) Solve the linear congruence $18x \equiv 30 \pmod{42}$
- 15. (a) Explain about the converse of the Fermat's theorem by giving an example.
 - Or
 - (b) If P is a prime, prove that for any integer $a, P \mid a^p + (p-1)!$ and $P \mid (p-1)! a^p + a$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Establish the binomial theorem.

Or

(b) (i) Prove that

$$1.2+2.3+3.4+\dots+n(n+1)=\frac{n(n+1)(n+2)}{3}, \forall n \ge 1.$$

(ii) State and prove the second principle of finite induction.

Page 5 Code No. : 30579 E

- 17. (a) State and prove Euclidean Algorithm. Or
 - (b) (i) If a/b and a/c, prove that $a \mid (bx+cy), x, y \in Z$.
 - (ii) State and prove Division Algorithm.
- 18. (a) State and prove fundamental theorem of arithmetic.

$$\mathbf{Or}$$

- (b) (i) Show that there are infinite number of primes.
 - (ii) Show that the number $\sqrt{2}$ is irrational
- 19. (a) (i) State and prove Chinese Remainder theorem.
 - (ii) Solve $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$ Or
 - (b) (i) If $a \equiv b \pmod{m}$ and f(x) is a polynomial coefficient, show that $f(a) \equiv f(b) \pmod{m}$.
 - (ii) Using congruences prove that the Fermat's number $F_5 = 2^{32} + 1$ is not a prime.
- 20. (a) Show that $a^{21} \equiv a \pmod{15}$. Or
 - (b) State and prove Wilson's theorem.

Page 6 Code No. : 30579 E