(6 pages)

Reg. No.:

Code No.: 20423 E Sub. Code: CMMA 52

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Fifth Semester

Mathematics - Core

REAL ANALYSIS

(For those who joined in July 2021-2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. In the discrete metric space M the diameter of $A = \{1, 5, 7, 9\}$ is
 - (a) 0

(b) 1

(c) 9

- (d) 8
- 2. In R with usual matric the open ball B(-1, 1) is
 - (a) [-2, 0]
- (b) [-2, 0)
- (c) [-1, 1)
- (d) (-2, 0)

- 3. The incorrect statement is -
 - (a) $D(Z) = \phi$
- (b) D(Z) = Q
- (c) D(Q) = R
- (d) $D(Q \times Q) = R \times R$
- 4. The incorrect statement is
 - (a) Q is second category
 - (b) R is second category
 - (c) l_2 is of second category
 - (d) Any complete metric is of second category
- 5. If $f: R \to R$ is continuous then
 - (a) f is 1-1
 - (b) f is onto
 - (c) f is uniformly continuous
 - (d) none of the above
- 6. In [0, 1] with usual metric the closure of $A = Q \cap (0, 1)$
 - (a) (0, 1)
- (b) A
- (c) [0, 1]
- (d) [0, 1)

Page 2 Code No.: 20423 E

- 7. Any connected subset of R containing more than one point is
 - (a) bounded
- (b) finite
- (c) uncountable
- (d) countable
- 8. Which of the following is a disconnected subset of \mathbb{R}^2
 - (a) $\{(x, y): x^2 + y^2 = 1\}$
 - (b) $\{(x, y) : x = 0\}$
 - (c) $\{(x, y): x = 0 \text{ or } y = 0\}$
 - (d) $\{(x, y) : x, y \in R\}$
- 9. Which of the following subset of *R* is both compact and connected?
 - (a) R

- (b) (0, 1)
- (c) [0, 100]
- (d) Q
- In a discrete metric space, the only connected subsets are
 - (a) finite sets
 - (b) the whole set
 - (c) singleton sets
 - (d) all proper subsets

Page 3 Code No.: 20423 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

11. (a) If d is a metric on M, prove that \sqrt{d} is a metric on M.

Or

- (b) Prove that in any metric space the union of any family of open sets is open.
- 12. (a) Prove that in any metric space the union of a finite number of closed sets is closed.

Or

- (b) Prove that any discrete metric space is complete.
- 13. (a) Let (M, d) be a metric space. Let $a \in M$. Show that the function $f: M \to R$ defined by f(x) = d(x, a) is continuous.

Or

(b) Prove that the functions $f: R \to R$ defined by $f(x) = \sin x$ is uniformly continuous on R.

Page 4 Code No.: 20423 E

[P.T.O.]

14. (a) Prove that A metric space M is connected iff there does not exist a continuous function f from M onto the discrete metric space {0, 1}.

Or

- (b) Let M be a metric space. Let A be a connected subset of M. If B is a subset of M such that $A \subseteq B \subseteq \overline{A}$, then B is connected.
- 15. (a) Prove that any compact subset A of a metric space (M, d) is closed.

Or

(b) Prove that any totally bounded metric space is separable.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b).

16. (a) Let (M, d) be a metric space. Define p(x, y) = 2d(x, y). Then prove that ρ and ρ are equivalent metrics.

Or

(b) Prove that let M be a metric space and let M_1 be a subspaces of M. Let $A_1 \subseteq M_1$. Then A_1 is open in M_1 iff there exists an open set A in M such that $A_1 = A \cap M_1$.

Page 5 Code No.: 20423 E

17. (a) Prove that A subset A of a complete metric space M is complete iff A is closed.

Or

- (b) State and prove Baire's category theorem.
- 18. (a) Prove that let (M_1, d_1) and (M_2, d_2) be two metric spaces. A functions $f: M_1 \to M_2$ is continuous iff $f^{-1}(F)$ is closed in M_1 whenever F is closed in M_2 .

Or

- (b) Prove that the metric spaces (0, 1) and (0, ∞) with usual metrics are homeomorphic.
- 19. (a) Prove that A subspace of R is connected iff it is an interval.

Or

- b) State and prove intermediate value theorem.
- 20. (a) State and prove Heine Borel theorem.

Or

(b) Prove that A metric space (M, d) is totally bounded iff every sequence in M has a cauchy subsquence.

Page 6 Code No. : 20423 E