(7 pages)

Reg. No. :

Code No.: 7135

Sub. Code: PMAM 43

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Fourth Semester

Mathematics - IV

ADVANCED ALGEBRA - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. The number e is
 - (a) rational
- (b) algebraic
- (c) trancendental
- (d) a unit
- 2. What is the degree of $\sqrt{2}\sqrt{3}$ over Q?
 - (a) 1

(b) 2

(c) 3

(d) 4

- 3. τ^* is an isomorphism of F[x] onto F'[t] with the property that, for all $\alpha \in F$, $\alpha \tau^* =$
 - (a) α

(b) 0

(c) a'

- (d) t
- 4. If f'(x) = 0 where $f(x) \in F[x]$ and f is of characteristic 3 then for some polynomial $g(x) \in F[x]$,
 - (a) g'(x) = 0
- (b) $f(x^3) = g(x)$
- (c) f(x) = g(x)
- $(d) \quad f(x) = g(x^3)$
- If F(x₁, x₂,...x_n) is the field of rational functions in x₁, x₂...x_n over F and S is the field of symmetric rational functions then [F(x₁, x₂...x_n); S]=
 - (a) S_n

(b) n

(c) n!

- (d) $G(F(x_1, x_2,...x_n), S)$
- 6. If F is the field of rational numbers and $K = F(\sqrt[3]{2})$ then O(G(K, F)) is
 - (a) 1

(b) 2

(c) 3

(d) 4

Page 2 Code No.: 7135

- If F is a field with 9 elements, F ⊂ K where K is a finite field such that [K:F] = 2 then K has _______ elements.
 - (a) 7

(b) 18

(c) 512

- (d) 81
- 8. The cyclotomic polynomial $P_6(x) =$
 - (a) $x^2 + x 1$
- (b) $x^4 x^3 x^2 + 1$
- (c) $x^2 x + 1$
- (d) $x^6 x^3 + 1$
- The irreducible polynomials over the field of real numbers are of degree
 - (a) 1

- (b) 2
- (c) either 1 or 2
- (d) neither 1 nor 2
- 10. If $x \in H$, the Hurwitz ring of integral quaternions $x \neq 0$ then N(x) is
 - (a) x

- (b) 0
- (c) a positive integer
- (d) can't say

Page 3

Code No.: 7135

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) If L is an algebraic extension of K and if K is an algebraic extension of F, show that L is an algebraic extension of F.

Or

- (b) If V = (g(x)) is the ideal generated by the polynomial g(x) of degree n in F[x], prove that $\frac{F[x]}{V}$ is an n-dimensional vector space over F.
- (a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

Or

- (b) Prove that the polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and f'(x) have a nontrivial common factor.
- (a) Define the fixed field of a group G of automorphsims of K and show that it is a sub field of K.

Or

(b) If K is a field and if $\sigma_1, \sigma_2, ..., \sigma_n$ are distinct automorphisms of K, show that it is impossible to find elements $a_1, a_2 ... a_n$ not all O, in K such that $a_1\sigma_1(u) + a_2\sigma_2(u) + ... + a_n\sigma_n(u) = 0$ for all $u \in K$.

Page 4

Code No.: 7135

[P.T.O.]

 (a) Show that for every prime number p and every positive integer m there exists a field having p^m elements.

Or

- (b) If F is a finite field and $\alpha \neq 0$, $\beta \neq 0$ are two elements of F, show that there exist elements a and b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.
- 15. (a) Show that the adjoint in the division ring Q of real quaternions satisfies the following:
 - (i) $x^{**} = x$
 - (ii) $(\delta x + \gamma y)^* = \delta x^* + \gamma y^*$
 - (iii) $(xy)^* = y^*x^*$ for all x, y in Q and all real δ and γ .

Or

(b) Define the norm N(x) in Q and show that, for all x, y in Q N(xy) = N(x)N(y).

Page 5 Code No.: 7135

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If L is a finite extension of K and if K is a finite extension of F, show that [L:F] = [L:K][K:F]. Draw your inference when [L:F] is a prime number.

Or

- (b) If $a \in K$ is algebraic of degree n over F, prove that [F(a):F] = n.
- 17. (a) If p(x) is irreducible in F[x] and if V is a root of p(x) then, show that F(V) is isomorphic to F'(W) where W is a root of p'(t), by an isomorphism σ such that (i) $v\sigma = w$ and (ii) $\alpha\sigma = \alpha'$ for every α in F.

Or

- (b) If F is of characteristics O and if a, b are algebraic over F, prove that there exists an element C in F(a, b) such that F(a, b) = F(c).
- 18. (a) Prove that [K:F] = O(G(K, F)), where K is a normal extension of F.

Or

Page 6 Code No.: 7135

- (b) Given F(x₁, x₂...x_n) is to field of rational functions, S is the field of symmetric rational functions a₁, a₂....a_n. Prove that (i) S = F(a₁, a₂....a_n) and (ii) F(x₁, x₂...x_n) is the splitting field over S of the polynomial tⁿ a₁tⁿ⁻¹ + a₂tⁿ⁻² + ... + (-1)ⁿ a_n.
- 19. (a) Given G is a finite abelian group with the property that x" = e is satisfied by at most n elements of G, for every integer n. Show that G is a cyclic group. Deduce that the multiplicative group of non zero elements of a finite field is cyclic.

Or

- (b) State and prove Wedderburn's theorem on finite division kings.
- 20. (a) State and prove Frobenius theorem.

Or

(b) State and prove Lagrange's four-square theorem.

Page 7 Code No.: 7135