(7 pages)

Reg. No. :

Code No.: 7117

Sub. Code: PMAM 21

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2019.

Second Semester

Mathematics - Core

ALGEBRA - II

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer:

- 1. If F is a field, the number of ideals of F is
 - (a) 1

- (b) 2
- (c) at least 2
- (d) 0
- 2. The homomorphism ϕ of R into R' is an isomorphism if and only if
 - (a) $I(\phi) \neq (0)$
- (b) $I(\phi)$ is an ideal of R
- (c) $I(\phi) = (0)$
- (d) $I(\phi) = R$

- 3. If π is a prime element in the Euclidean ring R and $a \in R$ then
 - (a) $(\pi, a) = 1$
 - (b) a/π
 - (c) If $\pi \nmid a$ then $(\pi, a) = 1$
 - (d) If π/a then $(\pi, a) = 1$
- 4. A solution of $x^2 = -1 \pmod{13}$ is
 - (a) 6

(b) 5

(c) 3

- (d) 2
- 5. The degree of $5+7x^2+4x^4+11x^5$ over the integers mod 11 is
 - (a) 4

(b) 5

(c) · 0

- (d) 2
- 6. Which one of the following is not true?
 - (a) A Euclidean ring is a unique factorization domain
 - (b) A Euclidean ring is a principal ideal ring
 - (c) If F is a field, $F[x_1, x_2]$ is a principal ideal ring
 - (d) If R is an integral domain then so is R[x]

Page 2 Code No. : 7117

- If $R = \mathbf{Z}$ the ring of integers then rad R is
 - (a) Z
 - (0)
 - (P) for same prime number P
 - 2%
- The relation between rad R and Rad R is
 - Rad R = rad R
 - $Rad R \subseteq rad R$
 - $rad R \subseteq Rad R$
 - They are not comparable
- A ring R is isomorphic to a sub direct sum of 9. integral domains if and only if
 - R is semi simple
 - R is without prime radical
 - R is a ring without identify
 - R is a commutative ring
- For any commutative regular ring R, J(R) is
 - (a) ø

R (c)

the centre of R (d)

Code No.: 7117 Page 3

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

are ideals of 11. (a) If U,V $U+V=\{u+v/u\in U,v\in V\}.$ Prove that U+Vis also an ideal.

Or

- (b) Let R be a commutative ring with unit element whose only ideals are (O) and R itself. Prove that R is a field.
- Let R be a Euclidean ring. Prove that any 12. (a) two elements a and b in R have a greatest common division and $d = \lambda a + \mu b$ for same $\lambda, \mu \in R$.

Or

- (b) Prove that J[i] is a Euclidean ring.
- (a) If f(x), g(x) are two new zero elements of f[x], prove that deg(f(x) g(x)) = deg f(x) + $\deg g(x)$.

Or

State and prove Gauss's lemma.

Page 4 Code No.: 7117 [P.T.O.] 14. (a) Let R be a principal ideal domain. Prove that R is semi simple if and only if R is either a field on has an infinite number of maximal ideals.

Or

- (b) For any ring R, prove that the quotient ring R/Rad R is without prime radical.
- 15. (a) Prove that an element a of the ring R is quasi regular if and only if there exists some $b \in R$ such that a+b-ab=0.

Or

(b) Let R be a ring containing no non zero nil ideals. Prove that R is isomorphic to a sub direct sum of integral domain.

SECTION C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If U is an ideal of the ring R, prove that R/U is a ring and is a homomorphic image or R.

Or

(b) Prove that every integral domain can be imbedded in a field.

Page 5 Code No. : 7117

17.' (a) Prove that the ideal $A = (a_0)$ is a maximal ideal of the Euclidean ring R if and only if a_0 is a prime element or R.

Or

- (b) After proving the necessary lemmas, prove that if p is a prime number of the form 4n+1, then $p=a^2+b^2$ for some integer a,b.
- 18. (a) State and prove the Eisenstein criterion.

Or

- (b) If R is a unique factorization domain, prove that R[x] is also a unique factorization domain.
- 19. (a) If I is an ideal of the ring R, prove that
 - (i) $rad(R/I) \supseteq \frac{rad R + I}{I}$ and
 - (ii) whenever $I \subseteq rad\ R$, $rad\left(\frac{R}{I}\right) = (rad\ R)/I$.

Or

(b) Define a primary ring. Prove that a ring R is a primary ring if and only if R has a minimal prime ideal which contains all zero divisions.

Page 6 Code No.: 7117

Prove that a ring R is isomorphic to a sub 20. direct sum of ring Ri, if and only if R contains a collection of ideals $\{Ii\}$ such that $R/I_i \cong R_i$ and $\bigcap I_i = (0)$.

Or

Prove that every ring R is isomorphic to a sub direct of sum of sub directly irreducible rings.

> Code No.: 7117 Page 7