Department of Physics Nesamony Memorial Christian College, Marthandam M. Sc. Physics Course Outcome

				Seme	ster – I M. Sc. Physics
Part	Course Name	Course Code	Credit	Hours	Course Outcome
	Core Course – I: Mathematical Physics	VPHC11	5	7	 CO1 Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them CO2 Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. CO3 Analyze characteristics of matrices and its different types, and the process of diagonalization. CO4 Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology CO5 Find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems
Part - A	Core Course - II: Classical Mechanics and Relativity	VPHC12	5	6	 CO1 Understand the fundamentals of classical mechanics. CO2 Apply the principles of Lagran gian mechanics to solve the equations of motion of physical systems. CO3 Apply the principles of Hamiltonian mechanics to solve the equations of motion of physical systems. CO4 Analyze the small oscillations in systems and determine their normal modes of oscillations. CO5 Understand and apply the principles of relativistic kinematics to the mechanical systems.
	Practical-I: General Physics and Electronics Experiments –	VPHL11	4	6	 CO1 Understand the strength of material using Young's modulus. CO2 Acquire knowledge of thermal behavior of the materials. CO3 Understand theoretical principles of magnetism through the experiments. CO4 Acquire knowledge about arc spectrum and applications of laser CO5 Improve the analytical and observation ability in Physics Experiments

					CO6 Conduct experiments on characteristics of FET Amplifier
					CO7 Analyze various parameters related to operational amplifiers.
					CO8 Understand the concepts involved in arithmetic and logical circuits using IC's
					CO9 Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits
					CO10 Analyze the applications of counters and registers
	Elective - I:	VPHE11	3	5	CO1 To identify various forms of renewable and non-renewable energy sources
	(Discipline Centric)				CO2 Understand the principle of utilizing the oceanic energy and apply it for practical applications.
	Energy Physics				CO3 Discuss the working of a windmill and analyze the advantages of wind energy.
					CO4 Distinguish aerobic digestion process from anaerobic digestion.
					CO5 Understand the components of solar radiation, their measurement and apply them to utilize solar
					energy.
	Elective - II:	VPHE12	3	6	CO1 Learn about the basic concepts for the circuit configuration for the design of linear integrated
	(Generic)				circuits and develops skill to solve problems
	Linear and Digital ICs				CO2 Develop skills to design linear and non-linear applications circuits using OpAmp and design the
	and Applications				active filters circuits.
					CO3 Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555
					timer and can solve problems related to it.
					CO4 Learn about various techniques to develop A/D and D/A converters.
					CO5 Acquire the knowledge about the CMOS logic, combinational and sequential circuit
			1	Seme	ster – II M. Sc. Physics
	Core Course – III:	VPHC21	5	6	CO1 Examine and elaborate the effect of changes in thermodynamic quantities on the states of matter
	Statistical Mechanics				during phase transition
					moduli eta using mieroscopie properties lika intermalacular foreas, ahemiasi handing, atomiaitu
					ata Describe the peculiar behavior of the entropy by mixing two gases Justify the connection
					between statistics and thermodynamic quantities
Part - A					CO3 Differentiate between canonical and grand canonical ensembles and to interpret the relation
					between thermo dynamical quantities and partition function
					CO4 To recall and apply the different statistical concepts to analyze the behavior of ideal Fermi gas
					and ideal Bose gas and also to compare and distinguish between the three types of statistics.
					CO5 To discuss and examine the thermo dynamical behavior of gases under fluctuation and also using
					I sing model

Core Course - IV: Quantum Mechanics	VPHC22	5	6	CO1 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics
-I				CO2 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems
				CO3 Can discuss the various representations, space time symmetries and formulations of time
				evolution
				CO4 Can formulate and analyze the approximation methods for various quantum mechanical problems
				CO5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.
Core Practical –II:	VPHL21	4	6	CO1 Understand the strength of material using Young's modulus
Practical – II: General				CO2 Acquire knowledge of thermal behavior of the materials
Physics and				CO3 Understand theoretical principles of magnetism through the experiments.
Electronics				CO4 Acquire knowledge about arc spectrum and applications of laser
Experiments – II				CO5 Improve the analytical and observation ability in Physics Experiments
				CO6 Conduct experiments on applications of UJT
				CO7 Analyze various parameters related to operational amplifiers
				CO8 Understand the concepts involved in arithmetic and logical circuits using IC's
				CO9 Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits
		4		CO10 Analyze the applications of counters and registers
Elective - III: (Discipline Centric)	VPHE23	4	4	CO1 Understand the basic of nano science and explore the different types of nano materials and should comprehend the surface effects of the nano materials.
Physics of Nano				CO2 Explore various physical, mechanical, optical, electrical and magnetic properties nano materials.
Science and				CO3 Understand the process and mechanism of synthesis and fabrication of nanomaterials.
Technology				CO4 Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.
				CO5 Apply the concepts of nano science and technology in the field of sensors, robotics, purification of air and water and in the energy devices.
Elective - IV:	VPHE24	4	4	CO1 Gain knowledge of architecture and working of 8085 microprocessor.
(Industry				CO2 Get knowledge of architecture and working of 8051 Microcontroller.
Entrepreneurship)				CO3 Be able to write simple assembly language programs for 8085A microprocessor.
a) Microprocessor				CO4 Able to write simple assembly language programs for 8051 Microcontroller.
8085&Microcontroller				CO5 Understand the different applications of microprocessor and microcontroller.
8051				

	SEC - I:	VPHSE21	4	4	CO1 Acquire the knowledge of the fundamental concept of physics
	(PCS)				CO2 Understand the concepts of fundamental physics
	Physics for				CO3 Apply the concept of physics to solve various problems
	Competitive				CO4 Strengthen an appropriate problem-solving approach and assess a step to describe the quantitative
	Examinations 4				analysis.
					CO5 Evaluate the results of new analytical problems and develop a correct solutions or conclusions
				Semes	ter – III M. Sc. Physics
	Core Course –V:	WPHM31	5	5	CO1 Familiarize the concept of scattering theory such as partial wave analysis and Born approximation
	Quantum Mechanics-				CO2 Give a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and
	II				related concepts
					CO3 Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations
					and the phenomena accounted by them like electron spin and magnetic moment
					CO4 Introduce the concept of covariance and the use of Feynman graphs for depicting different
					interactions
					CO5 Demonstrate an understanding of field quantization and the explanation of the scattering matrix.
	Core Course -VI:	WPHM32	5	5	CO1 Student will be able to list out the crystal systems, symmetries allowed in a system and also the
Part - A	Condensed Matter				diffraction techniques to find the crystal structure
	Physics				CO2 Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension
					to band theory of solids.
					CO3 Student will be able to comprehend the heat conduction in solids
I dit IX					CO4 Student will be able to generalize the electronic nature of solids from band theories.
					CO5 Student can compare and contrast the various types of magnetism and conceptualize the idea of
					superconductivity.
	Core Course -VII:	WPHM33	5	5	CO1 Recall the transcendental equations and analyze the different root finding methods. Understand
	Numerical Methods				the basic concept involved in root finding procedure such as Newton Raphson and Bisection
	and Programming				methods, their limitations.
					CO2 Relate Simultaneous linear equations and their matrix representation Distinguish between various
					methods in solving simultaneous linear equations.
					CO3 Understand, how interpolation will be used in various realms of physics and Apply to some
					simple problems Analyze the newton forward and backward interpolation
					CO4 Recollect and apply methods in numerical differentiation and integration. Assess the trapezoidal
					and Simpson's method of numerical integration.
					CO5 Understand the basics of C++-programming and conditional statements

	Core Practical- III:	WPHL31	4	6	CO1 Determination of some physical constants using specialized instruments
	(Industry Module)				CO2 Spectral data analysis techniques and interpretation
	Advanced Physics				CO3 Simulation of some physical experiments using specialized software
	Experiments-I and				CO4 Hands on experience with microprocessor Programming
	Microprocessor 8085				CO5 Hands on experience with Microcontroller Programming
	& Microcontroller				
	8051 Programming				
	Elective -V:	WPHE31	3	5	CO1 Understand fundamentals of rotational spectroscopy, view molecules as elastic rotors and
	Spectroscopy				interpret Their behaviour. Able to quantify their nature and correlate them with their
					characteristic properties.
					CO2 Understand the working principles of spectroscopic instruments and theoretical background of IR
					pectroscopy. Able to correlate mathematical process of Fourier transformations with
					instrumentation. Able to interpret vibrational spectrum of small molecules.
					CO3 Interpret structures and composition of molecules and use their knowledge of Raman
					Spectroscopy as an important analytical tool
					CO4 Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a
					substances
					CO5 Learn the electronic transitions caused by absorption of radiation in the UV/Vis region of the
					electromagnetic spectrum and be able to analyze a simple UV spectrum.
	SEC - II:	WPHSE31	2	4	CO1 Gained knowledge in solid waste management
	(Industry Oriented)				CO2 Equipped to take up related job by gaining industry exposure
	Sewage and Waste				CO3 Develop entrepreneurial skills
	Water Treatment and				CO4 Will be able to analyze and manage the status of the solid wastes in the nearby areas
	Reuse				CO5 Adequately sensitized in managing solid wastes in and around his/her locality
	Internship / Industrial		2	External	
Part - B	Activity/ Field visit/			Valuation	
I alt - D	Research			required	
	Knowledge updation				
	Activity / Literacy				
	Internship Report to				
	be submitted to the				
	Department				

				Semes	ster – IV M. Sc. Physics
	Core Course VIII:-	WPHM41	5	6	CO1 Gain knowledge about the concepts of helicity, parity, angular correlation and internal
	Nuclear and Particle				conversion.
	Physics				CO2 Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay,
					nuclear reactions and the interaction of radiation and matter.
					CO3 Use the different nuclear models to explain different nuclear phenomena and the concept of
					resonances through Briet- Weigner single level formula
					CO4 Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.
					CO5 Summarize and identify allowed and forbidden nuclear reactions based on
					conservation laws of the elementary particles.
	Core Course -XII:	WPHL41	4	6	Section A
	Advanced Physics				CO1 Students will be able to evaluate the efficiency and performance of solar cells by analyzing their
	Experiments - II and				spectral response to different wavelengths of light.
	Numerical Methods in				CO2 Students will understand the functional characteristics of ADCs, including linearity, accuracy,
	C++				resolution, and dynamic range, through practical examination of the ADC 0804.
Part - A					CO3 Students will be able to characterize the current-voltage relationship of a CdS photo resistor under constant irradiance conditions.
					CO4 Students will be able to determine and analyze the temperature coefficient of resistance for a thermistor using the Carey Foster Bridge method.
					CO5 Students will be able to measure and interpret the spacing between tracks on optical discs using diffraction patterns generated by a solid-state laser.
					CO6 Students will gain practical experience in verifying and applying Norton's, Thevenin's, and
					Maximum Power Transfer theorems in electrical circuits.
					CO7 Students will understand and evaluate the performance characteristics of load cells, including
					their response to varying loads.
					CO8 Students will acquire the ability to design, implement, and test serial shift registers using flip-
					flops and integrated circuits.
					CO9 Students will learn to design and construct encoder and decoder circuits, understanding their minoinles and amplications in digital systems
					principles and applications in digital systems.
					oscillator, understanding its operation and applications
					CO11 Students will develop skills in using simulation software to model and analyze satellite orbits
					Con students will develop skins in using simulation software to model and analyze satellite offits

				based on the universal law of gravitation.
				Section B
				CO1 Students will be able to apply the Newton Raphson method manually to solve given equations and
				implement it in C++ for verification.
				CO2 Students will demonstrate proficiency in applying the Bisection method manually and
				implementing it in C++ to find solutions, ensuring accuracy through verification.
				CO3 Learners will understand the principle of least squares and successfully fit a straight line to given
				data using C++, applying it to physics experiments.
				CO4 Students will grasp the principle of least squares for nonlinear fits and implement it in C++ to fit a polynomial to experimental data, specifically exploring physicsrelated datasets.
				CO5 Students will derive the Lagrangian interpolation formula and apply it in $C++$ to interpolate data
				from physics experiments, gaining practical experience in numerical methods.
				CO6 Students will comprehend the Gauss Elimination method for solving simultaneous equations and
				implement it in C++ to find unknown branch currents in a Wheatstone bridge, linking numerical
				methods to circuit analysis.
				CO7 Learners will derive the exponential law of radioactive decay and employ the RK 4th order
				method in C++ to solve differential equations, comparing results to analytical solutions in a
				radioactive decay scenario.
				CO8 Students will understand and derive the Trapezoidal and Simpson's rules for numerical integration
				and implement corresponding C++ programs, validating their accuracy through comparison with
				direct integration methods.
				CO9 Students will be proficient in generating and scaling random numbers in C++ using library
				functions and applying the Monte Carlo method to evaluate integrals, integrating randomness
				into numerical methods.
				CO10 Students will demonstrate competence in matrix multiplication, comprehend rotation matrix
				concepts, and implement a C++ program to rotate 2D objects about the origin, emphasizing
				practical applications in computer graphics or physics simulations.
				COIL Students will apply numerical differentiation to solve physical problems, derive Newton's law of
				cooling equation, and validate it through a C++ program analyzing experimental data
Elective VI.(Concric)				connecting mathematical modeling to real-world phenomena.
Electre VI:(Generic)	WDUE 41	2	6	cor solve the differential equations using Laplace equation and to find solutions for boundary value
Liectro Magnetic	WFHE41	3	0	problems

	Theory				CO2 Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector
					potential for various physical problems
					CO3 Apply Maxwell's equations to describe how electromagnetic field behaves in different media
					CO4 Apply the concept of propagation of EM waves through wave guides I optical fiber
					communications and also in radar installations, calculate the transmission and reflection
					coefficients of electromagnetic waves
					CO5 Investigate the interaction of ionized gases with self-consistent electric and magnetic fields
	SEC - III:	WPHSE41	2	4	CO1 Gained knowledge in fundamental aspects of solar energy utilization
	(Industry Oriented)				CO2 Equipped to take up related job by gaining industry exposure
Part - B	Solar Energy				CO3 Develop entrepreneurial skills
	Utilization				CO4 Skilled to approach the needy society with different types of solar cells
					CO5 Gained industrialist mindset by utilizing renewable source of energy
	Core Project	WPHP41	8	8	
	Project with viva voce				
	Extension Activity		1	External	
	/Pollution			Valuation	
	Awareness/Literacy /			required	
Part - C	Voluntary Services				
	Report to be				
	submitted to the				
	Department				