Department of Mathematics Nesamony Memorial Christian College, Marthandam **M. Sc. Mathematics Course Outcome**

				Semest	ter – I M. Sc. Mathematics
Part	Course Name	Course Code	Credit	Hours	Course Outcome
	Core Course – I: Group Theory	VMAC11	5	6	 Students will be able to CO1 Recall basic counting principle, characterization of normal subgroups, group homomorphism and application CO2 Define Solvable groups, automorphisms and Cayley's Theorem. CO3 Explain Permutation Groups and Another Counting Principle. CO4 Explain Sylow's theorems and apply the theorem to find number of Sylow subgroups CO5 Define direct products, examine the properties of finite abelian groups
Part - A	Core Course - II: Real Analysis	VMAC12	5	6	 Students will be able to CO1 Analyze and evaluate functions of bounded variation and Rectifiable Curves. CO2 Describe the concept of Riemann-Stieltjes integral and its properties. CO3 Demonstrate the concept of step function, upper function, Lebesgue function and their integrals. CO4 Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem. CO5 Formulate the concept and properties of inner products, norms and measurable functions.
	Core Course - III: Ordinary Differential Equations	VMAC13	4	6	 Students will be able to CO1 Establish the qualitative behaviour of solutions of systems of differential equations. CO2 Recognize the physical phenomena modelled by differential equations and dynamical systems. CO3 Analyze solutions using appropriate methods and give examples. CO4 Formulate Green's function for boundary value problems. CO5 Understand and use various theoretical ideas and results that underlie the mathematics in this course.

	Elective - I: Graph	VMAE11	3	6	Students will be able to
	Theory and				CO1 Demonstrate the concept of different structures and types about graphs and explain its applications.
	Applications				CO2 Determine the properties of trees and applications in network and study the concepts of connections in graphs.
					CO3 Acquire the knowledge about Euler Tours, Hamilton Cycles and Matchings in Graphs.
					CO4 Analyze the concept of edge colouring, independent sets and cliques in Graphs
					CO5 Explain the concept of vertex colourings.
	Elective - II:	VMAE15	3	6	Students will be able to
	Analytic Number				CO1 Study the basic concepts of elementary number theory
	Theory				CO2 Explain several arithmetical functions and construct their relationships
					CO3 Apply algebraic structure in arithmetical functions
					CO4 Demonstrate various identities satisfied by arithmetical functions
					CO5 Determine the application to $\mu(n)$ & $\Lambda(n)$ and several equivalent form of prime number theorem
				Semest	er – II M. Sc. Mathematics
	Core Course – IV:	VMAC21	5	6	Students will be able to
	Ring Theory and				CO1 Demonstrate competence with the basic ideas of algebra including the concepts of ideals and
	Lattices				quotient Rings.
					CO2 Understand the concept of the Particular Euclidean ring.
					CO3 Able to demonstrate about the Polynomial rings over Commutative rings.
					CO4 Appreciate the significance Radicals
					CO5 Acquired the knowledge of direct sum of rings
	Core Course - V:	VMAC22	5	6	Students will be able to
	Real Analysis - II				CO1 Understand measurable function and Lebesgue outer measure
Part - A					CO2 Explain Rieman and Lebesgue Integral.
					CO3 Understand and describe the basic concepts of Fourier series and Fourier integrals with respect to
					the orthogonal system. Analyze and evaluate the difference between transforms of various
					functions.
					CO4 Explain directional derivative, total derivative, matrix of linear function and sufficient condition
					for differentiability
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			-	CO5 Explain implicit functions and Extremum problems with side conditions.
	Core Course - VI:	VMAC23	4	6	Students will be able to
	Probability				CO1 To define Random Events, Random Variables, to describe Probability, to apply Bayes, to define
	Theory				Distribution Function, to find Joint Distribution function, to find Marginal Distribution and

					 Conditional Distribution function, to solve functions on random variables. CO2 To define Expectation, Moments and Chebyshev Inequality, to solve Regression of the first and second types. CO3 To define Characteristic functions, to define distribution function, to find probability generating functions, to solve problems applying characteristic functions CO4 To define One point, two-point, Binomial distributions, to solve problems of Hypergeometric and Poisson distributions, to define Uniform, normal, gamma, Beta distributions, to solve problems on Cauchy and Laplace distributions CO5 To discuss Stochastic convergence, Bernoulli law of large numbers, to elaborate Convergence of sequence of distribution functions, to prove Levy-Cramer Theorems and de Moivre-Laplace Theorems, to explain Poisson, Chebyshev, Khintchine Weak law of large numbers, to explain and solve problems on Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.
Rese	tive - III: earch hodology	VMAE21	3	5	Students will be able to CO1 Discuss to know about writing style CO2 Discuss the Tips and Strategies CO3 To know about the research project CO4 Discuss the different components of Research Project CO5 To learn the Publication and presentation of research articles and Tool kits
Oper	tive - IV: rations earch	VMAE25	3	5	 Students will be able to CO1 Be able to build and solve Transportation and Assignment problems using appropriate method CO2 Learn the constructions of network and optimal scheduling using CPM and PERT CO3 Ability to construct linear integer programming models and solve linear integer programming models using branch and bound method CO4 Understand the need of inventory management. CO5 To understand basic characteristic features of a queuing system and acquire skills in analyzing queuing models
Docu	- I: hematical umentation g LaTex	VMASE11	2	2	 Students will be able to CO1 To learn the latest techniques in Latex for the preparation of printable documents CO2 To avoid difficulty while typing a project or thesis comparing other mathematical software. CO3 To write mathematical equations and to draw graphs using Latex CO4 To fix footnotes and header CO5 To create tables and type formulae in Mathematics

				Semeste	r – III M. Sc. Mathematics
	Core Course –VII:	WMAM31	5	6	Students will be able to
	Advanced Algebra				CO1 Explain dual space, modules and linear Transformation
	-I				CO2 Describe the concept of Triangular Matrices
					CO3 Demonstrate the concept of Nilpotent and Jordan form of Matrices
					CO4 Define Rational Canonical form of Matrix, Trace and Transpose and Determinants
					CO5 Explain Hermitian, Unitary and Normal Transformations
	Core Course -VIII:	WMAM32	4	6	Students will be able to
	Complex Analysis				CO1 Explain analytic functions and power Series.
					CO2 Explain index of a point, integral formula, higher derivatives and removable singularities
					CO3 Demonstrate the concept of the general form of Cauchy's theorem
					CO4 Describe the concept of definite integral and harmonic functions.
					CO5 Develop Taylor and Laurent series.
	Core Course -IX:	WMAM33	5	6	Students will be able to
Dout A	Topology				CO1 Define and illustrate the concept of topological spaces and the basic definitions of open sets,
Part - A					neighbourhood, interior, exterior, closure and their axioms for defining topological space.
					CO2 Understand continuous functions, the product topology and metric topology.
					CO3 Understand Connected spaces, Components and Local Connectedness
					CO4 Understand Compact spaces, Limit Point Compactness and Local Compactness.
					CO5 Develop qualitative tools to characterize connectedness and compactness
	Core Course -X:	WMAM34	4	5	Students will be able to
	Calculus of				CO1 Understand the Calculus of Variations and Applications
	Variations and				CO2 Understand the Constraints and Lagrange's Multipliers
	Integral				CO3 Integral Equations
	Equations				CO4 Explain the causes and effects of Linear Equations
	-				CO5 Explain the Hilbert Schmidt theory
	Elective - V:	WMAE32	4	4	Students will be able to
	Mathematical				CO1 demonstrate Problem Solving Techniques and Algorithmic Problem Solving
	Python Theory				CO2 Understanding of basic Python and Python functions in mathematical problem solving
	SEC - II:	WMASE33	2	3	Students will be able to
Part - B	Programming in				CO1 To understand the structure of C++ program
Part - B	C++				CO2 Explain Control Structures- Functions in C++.
					CO3 Explain all functions classes and Objects.

					CO4 Explain the Nesting of member functions
	Internship / Industrial Activity/ Field visit/ Research Knowledge updation Activity /		2	External Valuation required	CO5 Explain Constructors and Destructors On completion of this course, students will / can;
	Literacy Internship Report to be submitted to the Department (Carried out in minimum 20 hours)				
				Semeste	
	Core Course –XI: Advanced Algebra -II	WMAM41	5	6	 Students will be able to CO1 Prove theorems by applying algebraic ways of thinking like extension fields and Algebraic extensions. CO2 Explain the nature of roots of Polynomials. CO3 Compose clear and accurate proofs using the concepts of Galois Theory. CO4 Bring out insight into Finite fields
					CO5 Demonstrate knowledge and understanding of fundamental concepts including a theorem of Frobenius, Integral Quaternions and the Four - Square theorem.
Part - A	Core Course -XII: Functional Analysis	WMAM42	4	6	 Students will be able to CO1 Understand the Banach spaces and Transformations on Banach Spaces. CO2 Prove open mapping theorem. CO3 Describe operators and fundamental theorems. CO4 Validate spectral theorem. CO5 Analyze and establish the regular and singular elements
	Project with Viva Voce	WMAM43	7	10	 On completion of this course, students will / can; CO1 Gives the student a skill such as problem solving, and helps to develop additional skills integral to their Future, such as critical thinking and time management. CO2 Enhance their knowledge through practicals and experience.

					CO3 Be developed interpersonal skills and decision-making skills.
					CO4 Give a platform to demonstrate his/her abilities.
					CO5 Be able to identify the strength and weakness, which will help them to enhance and improve their
					ability.
	Elective - VI:	WMAE42	4	5	Students will be able to
	Mathematical				CO1 Write programs using advanced concepts of Python.
	Python - Practical				CO2 Write, Test and Debug Python Programs.
					CO3 Implement Conditionals and Loops for Python Programs.
					CO4 Use functions and represent Compound data using Lists, Tuples and Dictionaries.
					CO5 Read, write and manipulate data from & to files in Python.
	SEC - III:	WMASE43	2	3	
Part - B	Programming in				
	C++ -Practical				
	Extension Activity		1	External	On completion of this course, students will / can;
	/Pollution			Valuation	CO1 Is a learning-teaching methods connect meaningful community service to academic curricula
	Awareness/Literacy			required	CO2 Service-learning blends community service goals and formal and informal (standard/academic and
Part - C	/ Voluntary				experiential/non-standard) educational goals in a manner that benefits participants and recipients.
	Services				CO3 Extension activities and learning is a set of techniques and tools that can strengthen community
	Report to be				relationships and connections.
	submitted to the				CO4 Extension contributes to national development programmers.
	Department				CO5 It enhances leadership and team work qualities among the students