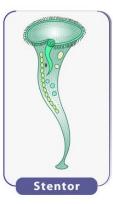
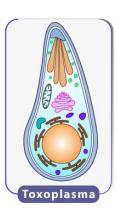
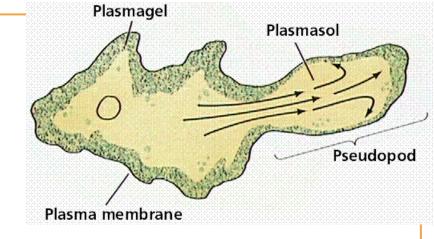
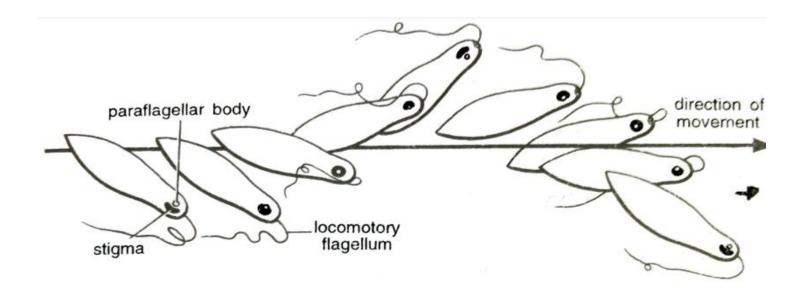

PROTOZOA MODES OF LOCOMOTION

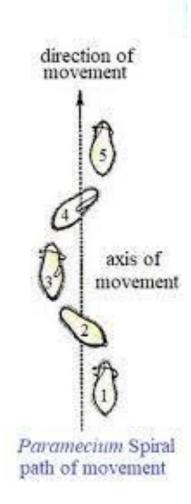




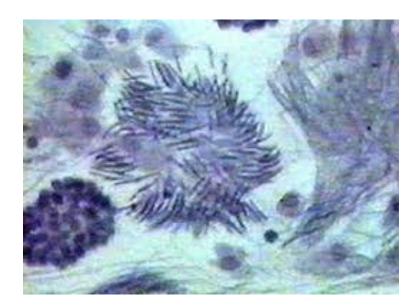



Amoeboid locomotion

- Amoeba pseudopodia
- Projection of ectoplasm in which endoplasm flows
- Change of viscosity theory or sol-gel theory Hyman supported by Pantin and Mast — way of formation of pseudopodia
- Attachment to the substrate
- Conversion of plasmasol into plasmagel
- Conversion of plasmagel into plasmasol
- Contraction of plasmagel at the posterior to push the plasmasol forward

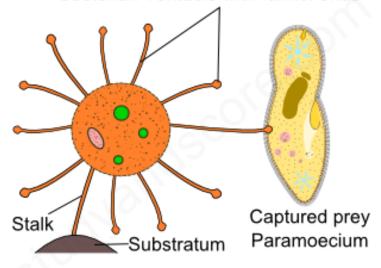

Flagellar movement

- Euglena lashing the flagellum
- rowing rigid but slightly concave
- undulating beats obliquely rotate
- spiral fashion
- 15 microns to 30 microns /second


Ciliary movement

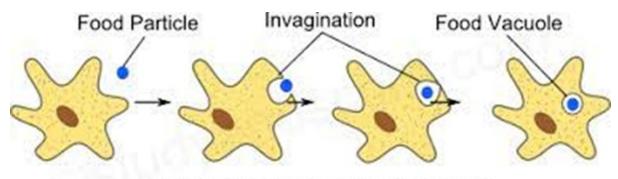
- Cilia backward forward movement.
- spiral path
- Paramecium
- 400 microns to 2,000 microns per second.

Gliding movement


- myoneme fibrils contractile and elastic
- change in the shape of the body.
- parasitic forms- Monocystis.

MODES OF NUTRITION

- Nutrition food taken in, digested, absorbed and assimilated
- derive their nutrients essential for the growth and maintenance


Suctorian Tentacle with funnel ends

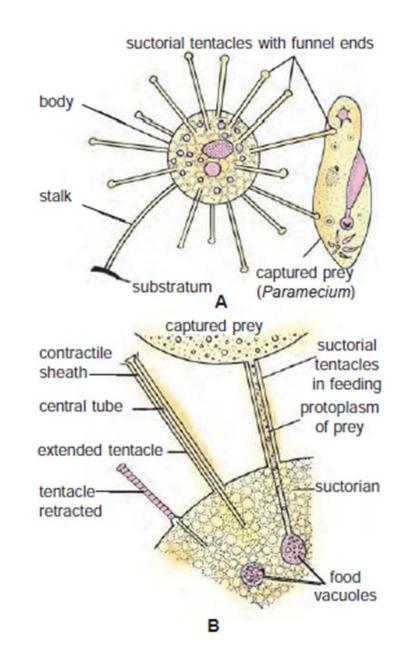
FEEDING IN SUCTORIANS

Holozoic or Zootrophic

- solid food bacteria, diatoms, rotifers, crustacean larvae, other protozoans, algae
 - Ingestion
 - Digestion
 - absorption and
 - egestion of undigested residues.

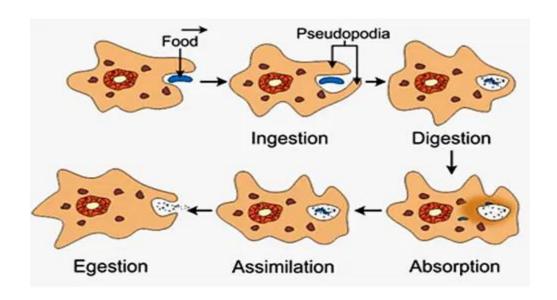
HOLOZOIC NUTRITION IN AMOEBA

Ingestion


- Phagocytosis
- Paramecium- cytostome base of the oral groove leads to cytopharynx - cilia
- beating whirl pool of water current
- The food particles cytopharynx

Suctorians

tentacles - central tubular canal surrounded by a contractile sheath


Prey - tips of tentacles - adhered and paralysed - toxin

The prey's cytoplasm - sucked

Digestion

- intracellular within food vacuoles
- changes in pH and in their size
- At first acidic and decrease in size living prey dies
- Next, produces enzymes alkaline increase in size - digestion
- proteolytic and carbohydrate digesting enzymes
- Proteins into dipeptides -acidic medium
- dipeptides into amino-acids alkaline medium
- carbohydrates alkaline medium

Absorption and assimilation

- Digested food (food vacuole) diffused out into the endoplasm and finally assimilated in the body to manufacture the protoplasm.
- The excess of food is stored in form of glycogen in the endoplasm.

Egestion

Undigestible remains of the food – egested – at any body surface. Eg. *Amoeba*Ciliates – definite opening – cytopyge

Pinocytosis

- Cell drinking Amoeba, flagellates, ciliates
- pinocytic channels form pinocytic vesicles or pinosomes
- separated after engulfing liquid food through the channels
- separated pinosomes become the food vacuoles
- induced in presence of certain salts and some proteins

Autotrophic or Holophytic Nutrition

- Protozoa with chlorophyll manufacture complex organic food
- e.g., Euglena, Noctiluca.
- pyrenoids which are the centres of photosynthesis

Saprozoic Nutrition

- Protozoa absorb complex organic substances in solution osmosis
- Saprozoic forms need ammonium salts, amino acids, or peptones for their nutritional requirements

Parasitic Nutrition

The parasitic forms feed either holozoically or saprozoically

- 1. Food-robbers. The parasites feeding upon the undigested or digested foodstuffs of their hosts are known as food-robbers
- 2. Pathogenic. The protozoan parasites causing harm to their hosts, usually feed upon the living tissues of the host.

Coprozoic Nutrition

 Certain free-living protozoans are in habit of feeding upon the faecal matters of the other organisms

Mixotrophic Nutrition

Some Protozoa nourish themselves by more than one method at the same time or at different times due to change in environment.

E.g. Euglena -saprozoic and autotrophic